
Copyright c©2005 IEEE. Reprinted from 38th Intl Symp Microarchitecture, Nov 2005, pp. 171-182. This material is posted here with

permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by

writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Address-Indexed Memory Disambiguation and Store-to-Load Forwarding

Sam S. Stone, Kevin M. Woley, Matthew I. Frank

Department of Electrical and Computer Engineering

University of Illinois, Urbana-Champaign

{ssstone2,woley,mif}@uiuc.edu

Abstract

This paper describes a scalable, low-complexity alter-

native to the conventional load/store queue (LSQ) for su-

perscalar processors that execute load and store instruc-

tions speculatively and out-of-order prior to resolving their

dependences. Whereas the LSQ requires associative and

age-prioritized searches for each access, we propose that

an address-indexed store-forwarding cache (SFC) perform

store-to-load forwarding and that an address-indexed mem-

ory disambiguation table (MDT) perform memory disam-

biguation. Neither structure includes a CAM. The SFC be-

haves as a small cache, accessed speculatively and out-of-

order by both loads and stores. Because the SFC does not

rename in-flight stores to the same address, violations of

memory anti and output dependences can cause in-flight

loads to obtain incorrect values from the SFC. Therefore,

the MDT uses sequence numbers to detect and recover from

true, anti, and output memory dependence violations.

We observe empirically that loads and stores that vio-

late anti and output memory dependences are rarely on a

program’s critical path and that the additional cost of en-

forcing predicted anti and output dependences among these

loads and stores is minimal. In conjunction with a sched-

uler that enforces predicted anti and output dependences,

the MDT and SFC yield performance equivalent to that of

a large LSQ that has similar or greater circuit complexity.

The SFC and MDT are scalable structures that yield high

performance and lower dynamic power consumption than

the LSQ, and they are well-suited for checkpointed proces-

sors with large instruction windows.

1. Introduction

Modern superscalars expose parallelism by executing in-

structions speculatively and out of order, without violating

the data dependences among the instructions. To expose

additional instruction-level parallelism, processors may ex-

ecute load and store instructions prior to resolving their de-

pendences. Such processors include mechanisms to detect

and recover from memory dependence violations, to for-

ward values from in-flight stores to dependent loads, and

to buffer stores for in-order retirement. As instruction win-

dows expand and the number of in-flight loads and stores

increases, the latency and dynamic power consumption of

store-to-load forwarding and memory disambiguation be-

come increasingly critical factors in the processor’s perfor-

mance.

Conventional processors use a load/store queue (LSQ) to

perform store-to-load forwarding, memory disambiguation,

and in-order store retirement. The LSQ is neither efficient

nor scalable. Store-to-load forwarding and memory disam-

biguation require fully associative, age-prioritized searches

of the store queue and the load queue, respectively. In a

conventional processor, these searches exhibit high latency

and high dynamic power consumption. As the capacity of

the LSQ increases to accommodate larger instruction win-

dows, the latency and dynamic power consumption of as-

sociative LSQ searches threaten to become a performance

bottleneck [22].

In our design the functions of store-to-load forwarding,

memory disambiguation, and in-order retirement of stores

are divided among three structures: an address-indexed

store forwarding cache (SFC), an address-indexed mem-

ory disambiguation table (MDT), and a store FIFO. The

SFC and MDT yield low latency and low dynamic power

consumption for store-to-load forwarding and memory dis-

ambiguation. Because these structures do not include ei-

ther content-addressable memories (CAM’s) or priority en-

coders, they scale readily as the number of in-flight loads

and stores increases.

The SFC is a small direct-mapped or set-associative

cache to which stores write their values as they complete,

and from which loads may obtain their values as they exe-

cute. Accessed in parallel with the L1 data cache, the SFC

efficiently forwards values from in-flight stores to depen-

dent loads. Both loads and stores access the SFC specula-

tively and out-of-order, but the SFC does not rename stores

to the same address. Therefore, violations of true, anti, or

output memory dependences can cause loads to obtain in-

correct values from the SFC. The MDT detects all mem-

171



ory dependence violations via a technique similar to basic

timestamp ordering [3], a traditional concurrency control

technique in transaction processing. When a memory de-

pendence violation is detected, the memory unit initiates

recovery.

In this paper, we study the feasibility of replacing the

LSQ with a store forwarding cache and a memory disam-

biguation table. Because the SFC does not perform memory

renaming, we examine the effects of anti and output mem-

ory dependence violations and propose policies for manag-

ing those dependences. We make the following contribu-

tions:

1. Anti and output dependence violations increase in fre-

quency as the number of in-flight loads and stores increases.

However, loads and stores that violate anti and output de-

pendences are rarely on a process’s critical path. Enforc-

ing predicted anti and output dependences among loads and

stores incurs little additional complexity in the memory de-

pendence predictor and the scheduler. However, enforcing

these dependences greatly increases the performance of the

SFC and the MDT.

2. In a conventional superscalar, the SFC and the MDT

reduce the dynamic power consumption of store-to-load

forwarding and memory disambiguation, while providing

performance within 1% of an ideal LSQ. In a superscalar

with a large instruction window, the SFC and MDT provide

performance equivalent to that of a large LSQ that has sim-

ilar or greater circuit complexity.

3. Because the CAM-free MDT and SFC scale read-

ily, they are ideally suited for checkpointed processors with

large instruction windows.

The remainder of the paper is organized as follows. In

Section 2, we present the microarchitecture of the SFC and

the MDT, along with a memory dependence predictor that

enforces predicted true, anti, and output dependences. In

Section 3 we present our simulation methodology and the

results of our experiments. In Section 4, we discuss the mo-

tivation for low-power, low-latency memory disambigua-

tion and store-to-load forwarding, as well as recent propos-

als for optimizing the memory subsystem. Section 5 con-

cludes.

2. Design

We propose that the functions of store-to-load forwarding,

memory disambiguation, and in-order retirement of stores

be divided among three structures: an address-indexed store

forwarding cache (SFC), an address-indexed memory dis-

ambiguation table (MDT), and a store FIFO. The address-

indexed SFC and MDT yield low latency and low dynamic

power consumption for store-to-load forwarding and mem-

ory disambiguation. Furthermore, these structures scale

readily as the number of in-flight loads and stores increases.

Fetch

Decode

Memory Dependence
Prediction

Rename

Schedule

Memory Unit

SFC

Retire

Store 

FIFO

MDT

Figure 1. Processor Pipeline. A store enters

the non­associative store FIFO at dispatch,

writes its data and address to the FIFO during

execution, and exits the FIFO at retirement.

The Store Forwarding Cache (SFC) is part of

the memory unit, and is accessed by both
loads and stores. The Memory Disambigua­

tion Table (MDT) interacts with the memory

unit and memory dependence predictor.

The SFC is a small cache to which a store writes its value

as it completes, and from which a load may obtain its value

as it executes. Accessed in parallel with the L1 cache, the

SFC efficiently bypasses values from in-flight stores to de-

pendent loads. Because loads and stores access the SFC

out of order, the accesses to a given address may violate

true, anti, or output dependences. To detect memory de-

pendence violations the MDT tracks the highest sequence

numbers yet seen of the loads and stores to each in-flight

address. When the ordering of sequence numbers indicates

that a memory dependence violation has occurred, the MDT

initiates recovery.

In the foregoing discussion, we assume that the pro-

cessor includes a simple instruction re-execution mecha-

nism, whereby the memory unit can drop an executing load

or store and place the instruction back on the scheduler’s

ready list. In particular, loads and stores that are unable to

complete because of structural conflicts in the SFC or the

MDT may be re-executed. Because the scheduler does not

speculatively issue instructions dependent on a load before

the load completes, this mechanism is considerably simpler

than selective re-execution.

In Section 2.1, we describe a memory dependence pre-

dictor and scheduler that enforce predicted true, anti, and

output memory dependences. Sections 2.2 and 2.3 present

172



the memory disambiguation table and the store forwarding

cache, respectively. Section 2.4 discusses optimizations re-

lated to recovering from memory ordering violations and

structural conflicts in the MDT and SFC.

2.1. Scheduling Predicted Dependences

Because the SFC does not perform memory renaming, anti

and output memory dependence violations can potentially

degrade the processor’s performance. To avoid unneces-

sary pipeline flushes, we adapt the store-set predictor [5]

and the scheduler to enforce predicted true, anti, and out-

put memory dependences. The producer-set predictor in-

cludes a producer table and a consumer table (in place of

the store-set id table), as well as a last-fetched producer ta-

ble (in place of the last-fetched store table). When the MDT

notifies the producer-set predictor of a dependence viola-

tion, the predictor inserts a dependence between the earlier

instruction (the producer) and the later instruction (the con-

sumer) by placing the two instructions in the same producer

set. That is, the predictor places the same producer-set id

in the producer and consumer table entries indexed by the

producer and consumer PC’s, respectively. Rules for merg-

ing producer sets are identical to the rules for merging store

sets.

When a load or store instruction enters the memory de-

pendence predictor, it accesses the PC-indexed producer

and consumer tables (PT and CT, respectively). If the in-

struction finds a valid producer-set id in the producer table,

it uses that id to access the corresponding entry in the last-

fetched producer table (LFPT), obtains a dependence tag

from the LFPT’s free list, and writes the dependence tag

number into the LFPT entry. Likewise, if the instruction

finds a valid producer-set id in the consumer table, it uses

that id to read the dependence tag number from the corre-

sponding LFPT entry.

The scheduler tracks the availability of dependence tags

in much the same manner as it tracks the availability of

physical registers. A load or store instruction is not per-

mitted to issue until the dependence tag that it consumes

(if any) is ready. After the scheduler issues a load or store

instruction to the memory unit, the scheduler marks the de-

pendence tag produced by the instruction (if any) as ready.

In this manner, predicted consumers of a producer set be-

come dependent on that set’s most recently fetched pro-

ducer.

In conjunction with an MDT, the producer-set predictor

enforces predicted true, anti, and output memory depen-

dences. In conjunction with an LSQ, the producer-set pre-

dictor behaves much like the conventional store-set predic-

tor, with one exception. The producer-set predictor does not

enforce predicted output dependences among stores in the

same producer set, because the LSQ does not alert the de-

Tag Load Seq. Num. Store Seq. Num.

. . .

Figure 2. The Memory Disambiguation Ta­

ble is a set associative cache­like structure.

It stores the highest sequence numbers yet
seen of in­flight loads and stores to the ad­

dress indicated by the tag. As a load or

store instruction completes, the MDT com­

pares the instruction’s sequence number to

the sequence numbers in the corresponding

MDT entry. If the sequence number of the

completing instruction is lower than the se­
quence numbers in the MDT, there may be a

dependence violation.

pendence predictor when output dependence violations oc-

cur. By enforcing predicted output dependences, the store-

set predictor minimizes the number of false memory order-

ing violations caused by silent stores [18]. When a store

completes after a subsequent store and load to the same ad-

dress have completed, a conventional LSQ detects a mem-

ory ordering violation, even though the load obtained the

correct value from the later store. We simulate an LSQ

that does not falsely flag silent stores as ordering viola-

tions; therefore, the producer-set dependence predictor is

well-suited to both the LSQ and the MDT.

2.2. Memory Disambiguation Table (MDT)

The memory disambiguation table (Figure 2) is an address-

indexed, cache-like structure that replaces the conventional

load queue and its associative search logic. To reduce the

complexity of memory disambiguation, the MDT buffers

the sequence numbers of the latest load and store to each

in-flight memory address. Therefore, memory disambigua-

tion requires at most two sequence number comparisons for

each issued load or store. When the MDT detects a mem-

ory dependence violation, it conservatively initiates recov-

ery by flushing all instructions subsequent to the load or

store whose late execution caused the dependence violation.

The MDT uses sequence numbers to detect memory de-

pendence violations. Conceptually, the processor assigns

sequence numbers that impose a total ordering on all in-

flight loads and stores. Techniques for efficiently assign-

ing sequence numbers to loads and stores (and for handling

sequence number overflow) are well known. For example

173



the LSQ relies on sequence numbers to locate the slot from

which a load (or store) should initiate its search of the store

(or load) queue [1, 6, 11].

When a load issues, it calculates its address and uses the

low-order address bits to access its entry in the MDT. If the

load’s sequence number is later than the load sequence num-

ber in the MDT entry, or if the entry contains no valid load

sequence number, then the load must be the latest issued

load to its address. Therefore, the load writes its sequence

number into the MDT. Otherwise, the load sequence num-

ber in the MDT entry does not change. If the load’s se-

quence number is earlier than the store sequence number in

the MDT, the MDT detects an anti-dependence violation.

Otherwise, no memory ordering violation is known to have

occurred. Finally, when the load retires, it compares its se-

quence number to the load sequence number in its MDT

entry. If the sequence numbers match, then the retiring load

is the latest in-flight load to its address. Thus, the MDT in-

validates the entry’s load sequence number by clearing the

associated valid bit. If the entry’s store sequence number is

also invalid, then the MDT frees the entry.

A store accesses the MDT in a similar manner. If the

store’s sequence number is later than the store sequence

number in the MDT, or if the entry contains no valid store

sequence number, then the store writes its sequence number

into the MDT. Otherwise, the MDT detects an output depen-

dence violation. Likewise, if the store’s sequence number is

earlier than the load sequence number, the MDT detects a

true dependence violation. Retirement of stores is analo-

gous to retirement of loads.

When the MDT detects a memory dependence violation,

it conservatively flushes all instructions subsequent to the

load or store whose late execution caused the violation. In

the case of a true dependence violation, the pipeline flushes

all instructions subsequent to the store that executed later

than a dependent load, and the dependence predictor in-

serts a dependence between the store (producer) and the

load (consumer). To facilitate communication between the

MDT and the dependence predictor, each MDT entry holds

not only the sequence numbers of the latest load and store

to each in-flight address, but also pointers to those same in-

structions (e.g., pointers to the instructions’ reorder buffer

slots).

The case for an output dependence violation is analo-

gous, with the pipeline flushing all instructions subsequent

to the earlier store, and the dependence predictor inserting

a dependence between the earlier store (producer) and the

later store (consumer). Finally, when an anti dependence

violation occurs, the pipeline flushes the load and all sub-

sequent instructions, and the dependence predictor inserts

a dependence between the earlier load (producer) and the

later store (consumer).

Entries in the MDT may be tagged or untagged. In an un-

tagged MDT, all in-flight loads and stores whose addresses

map to the same MDT entry simply share that entry. Thus,

aliasing among loads and stores with different addresses

causes the MDT to detect spurious memory ordering viola-

tions. Tagged entries prevent aliasing and enable construc-

tion of a set-associative MDT. With a tagged MDT, if a set

conflict prevents an in-flight load or store from allocating

an entry in the MDT, the memory unit drops the instruction

and places it back on the scheduler’s ready list.

When a memory instruction is unable to complete be-

cause it cannot allocate an entry in the tagged MDT (or in

the SFC, which is also tagged), reorder buffer lockup be-

comes a concern. If later loads or stores have allocated the

MDT/SFC entries needed by this instruction, then those en-

tries will not be available even when this instruction reaches

the head of the ROB. To avoid ROB lockup, the memory

unit permits any load or store at the head of the ROB to ex-

ecute without accessing the MDT or the SFC. If the instruc-

tion is a load, it simply obtains its value from the cache-

memory hierarchy and retires. If the instruction is a store, it

writes its value to the store FIFO and retires.

The number of bytes tracked by each MDT entry (the

MDT granularity) is an important parameter. Increasing

the MDT’s granularity allows each MDT entry to disam-

biguate references to a greater number of memory bytes.

In a small, tagged MDT, increasing the MDT’s granularity

can reduce the number of tag conflicts, thereby reducing the

number of loads and stores that must be re-executed. How-

ever, increasing the granularity of the MDT also increases

the probability of detecting spurious memory ordering vi-

olations among accesses to the distinct addresses that map

to a single MDT entry. Because the penalty for a memory

ordering violation (a pipeline flush) is more severe than the

penalty for a structural conflict (a re-execution), it is desir-

able to build a large MDT with small granularity. Empiri-

cally, we observe that an 8-byte granular MDT is adequate

for a 64-bit processor.

Finally, when a partial pipeline flush occurs, the MDT

state does not change in any way. Partial flushing occurs

frequently in architectures that checkpoint the register alias

table (RAT), such as the Alpha-21264 [15] and the MIPS-

R10000 [26]. When a partial flush occurs, the processor

recovers to the nearest checkpoint. Instructions later than

the nearest checkpoint are flushed, and fetch resumes along

the correct path. The LSQ recovers from partial pipeline

flushes simply by adjusting its tail pointers to discard the

canceled instructions. However, previous address-indexed

LSQ’s have suffered from severe penalties for partial flush-

ing [22]. By ignoring partial flushes, the MDT simply be-

comes conservative. That is, the MDT may detect spurious

memory ordering violations with respect to canceled loads

and stores. However, our experiments show that the associ-

ated penalty is not severe.

174



Tag Data Valid Corrupt

. . .

Figure 3. The Store Forwarding Cache is

a small, tagged, set­associative cache that
holds speculative store values that have not

yet committed to the memory system. Each

line holds up to 8 bytes of data. The valid bits

are used to detect partial matches from sub­

word stores. The corruption bits are used

during partial pipeline flushes to avoid for­

warding data from canceled stores.

2.3. Store Forwarding Cache (SFC)

The store forwarding cache (Figure 3) is an address-

indexed, cache-like structure that replaces the conventional

store queue’s associative search logic. In the absence of a

CAM, the store queue becomes a simple FIFO that holds

stores for in-order, non-speculative retirement. The SFC re-

duces the dynamic power consumption and latency of store-

to-load forwarding by buffering a single, cumulative value

for each in-flight memory address, rather than successive

values produced by multiple stores to the same address.

A load obtains a value from the SFC by performing an

address-indexed lookup, rather than by searching a queue

for earlier matching stores.

The SFC is a small, tagged cache. Each SFC entry in-

cludes eight bytes of data, an eight-bit valid mask, and an

eight-bit corruption mask. The data bytes hold the in-flight

value of an aligned memory word. When a store executes, it

calculates its address and performs a tag check in the SFC.

If the store’s address is already in the SFC, or if an entry

in the address’s set is available, the store writes its data to

that entry, sets the bits of the valid mask that correspond to

the bytes written, and clears the same bits of the corruption

mask. The purposes of the valid and corruption masks are

discussed below. Finally, the SFC frees an entry whenever

the latest store to the entry’s address retires. This condition

is identical to the MDT’s condition for invalidating an en-

try’s store sequence number. When the SFC frees an entry,

it resets the entry’s valid and corruption masks, as well as

the tag valid bit.

When a load executes, it accesses the SFC in parallel

with the L1 cache. If the load finds a matching address in

the SFC, and all the bytes accessed by the load are valid (a

full match), then the load obtains its value from the SFC.

By contrast, if only a subset of the bytes needed by the load

are marked valid (a partial match), the memory unit either

places the load back in the scheduler or obtains the missing

bytes from the cache. Finally, if any of the bytes needed by

the load are corrupt, the memory unit places the load back

in the scheduler.

The corruption bits guard SFC data that has been or may

have been corrupted by canceled store instructions. While

the MDT does detect all memory dependence violations, it

does not account for the effects of executed store instruc-

tions that are later canceled due to branch mispredictions or

dependence violations. If canceled and non-canceled loads

and stores to the same address issue in order, and the SFC

forwards a value from a canceled store to a non-canceled

load, then the MDT will not detect a violation.

When a full pipeline flush occurs the memory unit sim-

ply flushes the SFC, thereby discarding the effects of can-

celed stores. By contrast, when a partial pipeline flush oc-

curs the memory unit cannot flush the SFC, because the

pipeline still contains completed stores that were not flushed

and have not been retired. Such stores have not committed

their values to the cache, and canceled stores may have over-

written their values in the SFC. The addresses of such stores

are said to be corrupt because their values are not known to

be anywhere in the SFC-cache-memory hierarchy.

To prevent loads from obtaining stale values from the

cache or erroneous values from canceled stores, each SFC

entry includes a corruption mask. During a partial flush, the

SFC overwrites each entry’s corruption mask with the bit-

wise OR of its valid mask and its existing corruption mask.

That is, the SFC marks every byte that is valid as corrupt. If

a load attempts to access a corrupt address, then the mem-

ory unit drops the load and places the instruction back in the

scheduler’s ready list.

For example, assume that the following sequence of in-

structions (including an incorrectly predicted branch) has

been fetched and dispatched to the scheduler.

[1] ST M[B000] <- A1A1

[2] LD R1 <- M[B000]

BRANCH (mispredicted)

[3] ST M[B000] <- B2B2

Assume store [3] (along the incorrect path) executes before

the branch instruction. Then store [3] will write the value

B2B2 into the SFC over the value A1A1 that was written by

store [1]. When the branch instruction is finally executed

(and found to be mispredicted) the machine will perform

a partial flush of those instructions following the branch,

including store [3]. When the partial flush occurs the SFC

marks every byte that is valid as corrupt, including the SFC

entry corresponding to the bytes of address B000.

If a load instruction

[4] LD R2 <- M[B000]

175



is now fetched along the correct path and attempts to read its

value from the SFC it will find the entry marked as corrupt.

The memory unit does not complete the load, but rather sig-

nals the scheduler to place the load instruction back in the

ready queue.

Eventually store [1] will retire and commit its value to

the cache. When store [3] retires both the corrupt and valid

bits in the SFC entry for address B000 will be cleared.

Load [4] will then execute and obtain the value of store [1]

from the cache.

2.4. Recovery

The recovery policy in LSQ-based systems is limited to a

single case. The LSQ does not suffer from anti or output

dependence violations, because it renames in-flight stores to

the same address. When the LSQ detects a true dependence

violation, the load queue supplies the PC of the earliest load

that violated a true dependence with respect to the executing

store instruction. Thus, the associative load queue search

not only disambiguates memory references, but also per-

mits aggressive recovery from true dependence violations.

Assuming that the system created a checkpoint when the

misspeculated load dispatched, the load queue enables the

processor to recover from a true dependence violation by

flushing the earliest conflicting load and all subsequent in-

structions.

By contrast, in a memory subsystem based on the

MDT/SFC, true, anti, and output dependence violations all

necessitate some form of recovery. As described in Section

2.2, the memory subsystem’s policies for recovering from

memory ordering violations are conservative. We propose

more aggressive policies for recovering from ordering vio-

lations and structural conflicts. These policies offer trade-

offs between performance and complexity.

2.4.1 Recovery from True Dependence Violations

When the MDT detects a true dependence violation, only

the latest matching load is buffered in the MDT. If multiple

in-flight loads that violate the true dependence have issued,

then the MDT certainly does not contain a pointer to the

earliest conflicting load. Thus, the conservative recovery

policy flushes all instructions subsequent to the completing

store.

However, if the load that violates the true dependence

is the only in-flight load to its address, then that load must

be the latest conflicting load. This observation permits a

less conservative recovery policy. That is, each MDT entry

could keep a count of the number of loads completed but

not yet retired. When the MDT detects a true dependence

violation, if this counter’s value is one, the processor can

flush the early load and subsequent instructions, rather than

the instructions subsequent to the completing store.

2.4.2 Recovery from Output Dependence Violations

When the MDT detects an output dependence violation, the

executing store has overwritten the value of a later store to

the same address in the SFC. If a later load to the same ad-

dress attempted to access that entry, the load would obtain

the wrong value, but the MDT would not detect a second

dependence violation. Thus, when the MDT detects an out-

put dependence violation, the conservative recovery policy

flushes all instructions subsequent to the completing store.

This policy is conservative because the pipeline flush oc-

curs before any load obtains the corrupted value from the

overwritten SFC entry. Upon detection of an output depen-

dence violation, the memory subsystem could simply mark

the corresponding SFC entry as corrupt, and optionally alert

the memory dependence predictor to insert a dependence

between the offending stores. The normal policies for han-

dling corruptions (as described in Section 2.3) would then

apply.

2.4.3 Recovery from Structural Conflicts

When a load or store is unable to complete because of a set

conflict or an SFC corruption, the memory unit squashes the

instruction and places it back in the scheduler. However,

as the instruction’s source registers are ready, the scheduler

may re-issue the instruction after just a few clock cycles,

even though the set conflict or SFC corruption likely still

exists. To prevent the same instruction from continually re-

executing, the scheduler could add a single stall bit to each

load and store instruction. When the memory unit places

an instruction back in the scheduler, the scheduler sets that

instruction’s stall bit, indicating that it is not ready for is-

sue. As a simple heuristic, the scheduler clears all stall bits

whenever the MDT or SFC evicts an entry.

3. Evaluation

We used an execution-driven simulator of a 64-bit MIPS

pipeline to evaluate the performance of the MDT and the

SFC relative to the performance of the LSQ. The simulator

executes all instructions, including those on mispredicted

paths, and the results produced by retiring instructions are

validated against a trace generated by an architectural sim-

ulator. We simulate two different processors, a baseline su-

perscalar that supports up to 128 instructions in flight simul-

taneously and an aggressive superscalar that supports up to

1024 instructions in flight simultaneously. Both processors

include Alpha-21264 style renaming and checkpoint recov-

ery. Figure 4 lists the simulation parameters for both pro-

cessors.

In both the baseline and the aggressive configurations,

we model a highly idealized LSQ with infinite ports, in-

finite search bandwidth, and single-cycle bypass latency.

176



As discussed in Section 2.1 the LSQ does not falsely flag

memory ordering violations caused by silent stores, and the

producer-set predictor does not enforce output dependences

among stores in a producer set.

In all experiments, the granularity of the MDT is eight

bytes, and the data field of the SFC is eight bytes wide. Of

the optimizations discussed in Section 2.4, we model only

the optimized scheduling of re-executed loads and stores.

To model the tag check in the SFC, we increase the latency

of store instructions by one cycle for all experiments with

the SFC. Likewise, to model the tag check in the MDT,

we increase the penalty for memory ordering violations by

one cycle with the MDT. Finally, the scheduler is idealized

in the following way. When predicted producer loads and

stores issue, the scheduler aggressively awakens their pre-

dicted consumers. However, the scheduler oracularly avoids

awakening predicted consumers of loads and stores that will

be replayed.

We simulated 19 of the 26 SPEC 2000 benchmarks, each

with the lgred or mdred Minnesota Reduced inputs. Bench-

marks were run to completion or to 300,000,000 instruc-

tions. We lack compiler support for the Fortran 90 bench-

marks (galgel, facerec, lucas and fma3d) and run-

time library support for wupwise, sixtrack and eon.

For the aggressive processor, results for mesa were not

available due to a performance bug in the simulator’s han-

dling of system calls.

3.1. Baseline Processor

We first evaluate the performance of the MDT/SFC in the

baseline superscalar, using two different configurations of

the memory dependence predictor. In the first configura-

tion (labeled ENF in the figures), the dependence predic-

tor inserts a dependence arc between a pair of instructions

whenever the MDT detects any type of memory ordering vi-

olation. Therefore, the dependence predictor enforces pre-

dicted true, anti, and output dependences. In the second

configuration (labeled NOT-ENF in the figures), the depen-

dence predictor inserts a dependence arc between a pair of

instructions only when the MDT detects a true dependence

violation. Thus, the dependence predictor enforces only

predicted true dependences.

As Figure 5 shows, when the memory dependence pre-

dictor enforces only true dependences, the MDT/SFC pro-

vides average performance within 3% of an idealized LSQ

that has 48 entries in the load queue and 32 entries in the

store queue. When the dependence predictor enforces true,

anti, and output dependences, the MDT/SFC provides av-

erage performance within 1% of the 48x32 LSQ. Further-

more, the dependence predictor reduces the rate of anti and

output dependence violations by more than an order of mag-

nitude. The decreased rates of output dependence violations

in gzip, vpr route, and mesa, yield significant increases in

their respective IPC’s.

As increasing the size of the LSQ does not increase

the performance of any of the simulated benchmarks, we

conclude that the MDT/SFC and the producer-set predictor

represent a low-power, high-performance alternative to the

conventional LSQ in modern superscalars. Likewise, we

conclude that in the conventional superscalar, the producer-

set predictor effectively enforces true, anti, and output de-

pendences without unnecessarily constraining the out-of-

order issue of loads and stores.

3.2. Aggressive Processor

Next, we evaluate the performance of the MDT/SFC in the

aggressive superscalar. As before, we evaluate ENF and

NOT-ENF configurations of the producer-set predictor for

the MDT/SFC. In the ENF configuration, we alter the de-

pendence predictor to enforce a total ordering upon loads

and stores in the same producer set. The dependence pre-

dictor achieves this effect by treating any load or store in-

volved in a dependence violation as both a producer and

a consumer. We observe empirically that, in the aggres-

sive superscalar, the policy of enforcing a total ordering on

loads and stores in a producer set outperforms the policy of

enforcing predicted producer-consumer relationships.

Relative to the NOT-ENF configuration, the average IPC

of the ENF configuration is 14% higher across the specint

benchmarks and 43% higher across the specfp benchmarks.

Furthermore, across all benchmarks the average rate of

memory dependence violations decreases from 0.93% in the

NOT-ENF configuration to 0.11% in the ENF configuration.

Clearly, the performance of the NOT-ENF configuration is

severely restricted by its high rate of memory ordering vio-

lations.

As Figure 6 shows, relative to the 120x80 LSQ, the av-

erage IPC of the MDT/SFC is 9% lower across the specint

benchmarks. An analysis of the benchmarks that perform

poorly is given below. Nevertheless, given the highly ide-

alized nature of the simulated LSQ, the relative perfor-

mance of the MDT/SFC is quite encouraging. On the

specfp benchmarks, the MDT/SFC yields performance 2%

better than that of the 120x80 LSQ. We conclude that in

an aggressive superscalar with a large instruction window,

the producer-set predictor, SFC, and MDT provide perfor-

mance equivalent to that of a large LSQ with similar or

greater circuit complexity.

Among the specint benchmarks, bzip2, mcf, and vpr

route suffer performance degradations of 15% or more rel-

ative to the 120x80 LSQ. Among the specfp benchmarks,

ammp and equake suffer performance drops of 10% or

more. These five benchmarks merit further scrutiny.

The poor performances of bzip2 and mcf are caused by

177



Parameter Baseline Aggressive

Pipeline Width 4 instr/cycle 8 instr/cycle

Fetch Bandwidth Max 1 branch/cycle Up to 8 branches/cycle

Branch Predictor 8Kbit Gshare
+ 80% mispredicts turned to correct

predictions by an “oracle”
Memory Dep. Predictor 16K-entry PT and CT, 4K producer id’s, 512-entry LFPT

Misprediction Penalty 8 cycles

MDT 4K sets, 2-way set assoc. 8K sets, 2-way set assoc.

SFC 128 sets, 2-way set assoc. 512 sets, 2-way set assoc.

Renamer 128 checkpoints 1024 checkpoints

Scheduling Window 128 entries 1024 entries

L1 I-Cache 8Kbytes, 2-way set assoc., 128 byte lines, 10 cycle miss

L1 D-Cache 8Kbytes, 4-way set assoc., 64 byte lines, 10 cycle miss

L2 Cache 512 Kbytes, 8-way set assoc., 128 byte lines, 100 cycle miss

Reorder Buffer 128 entries 1024 entries

Function Units 4 identical fully pipelined units 8 units

Figure 4. Simulator parameters for the baseline and aggressive superscalar processors.

excessive SFC set conflicts and MDT set conflicts, respec-

tively. In bzip2, over 50% of dynamic stores must be re-

played because of set conflicts in the SFC. The rate of SFC

set conflicts across all other specint benchmarks is less than

0.16%. Likewise, in mcf, over 16% of dynamic loads must

be replayed because of set conflicts in the MDT. The rate

of such set conflicts across all other specint benchmarks is

only 0.002%.

Bzip2 and mcf are limited by the size, associativity,

and hash functions of the SFC and MDT, respectively. At

present, the hash functions use the least significant bits of

the load/store address to select a set in the SFC or MDT.

This simple hash makes the caches susceptible to high con-

flict rates when a process accesses multiple data structures

whose size is a multiple of the SFC or MDT size. To con-

firm our intuition, we increased the associativity of the SFC

and the MDT to 16 while maintaining the same number of

sets. In this configuration, only 0.07% of bzip2’s stores

experience set conflicts in the SFC, and the IPC increases

by 9.0%. Likewise, 0.00% of mcf’s loads experience set

conflicts in the MDT, and the IPC increases by 6.5%. We

conclude that a better hash function or a larger, more asso-

ciative SFC and MDT would increase the performance of

bzip2 and mcf to an acceptable level.

By contrast, vpr route, ammp, and equake all experi-

ence relatively high rates of SFC corruptions. In these

three benchmarks, roughly 20% of all dynamic loads must

be replayed because of corruptions in the SFC. Most other

benchmarks experience SFC corruption rates of 6% or less.

Although the causes of the high corruption rates in these

three benchmarks are unknown, it is likely that the corrup-

tion mechanism simply responds poorly to certain patterns

of execution.

As an alternative to the corruption bits, the SFC could

manage the effects of canceled stores by explicitly track-

ing their sequence numbers. For example, when a partial

pipeline flush occurred, the SFC could record the sequence

numbers of the earliest and latest instructions flushed (the

flush endpoints). If the SFC attempted to forward a value

from a canceled store, that store’s sequence number would

fall between the flush endpoints, and memory unit would

place the load back in the scheduler’s ready list. Of course,

the performance of this mechanism would depend on the

number of flush endpoints tracked by the SFC.

4. Background and Related Work

Independence prediction and dependence prediction can

significantly increase the performance of an out-of-

order memory subsystem. Memory independence pre-

dictors, such as the store-set predictor [5] and the

MDPT/MDST [16], permit loads to aggressively issue prior

to stores with unresolved addresses, while minimizing the

rate of true memory dependence violations. By contrast,

memory dependence predictors identify dependent store-

load pairs so that data can be forwarded directly from the

store (or the instruction that produced the store’s value) to

the load (or the instruction that consumes the load’s value).

Techniques for explicitly linking stores and dependent loads

without incurring the overhead of an associative store queue

search are described in [13, 25, 17].

Onder and Gupta propose an optimization of the conven-

tional store-set predictor and LSQ [18]. They observe that

the LSQ detects a false memory ordering violation if a silent

store (a store that is overwritten by a later store before any

178



1.931.882.071.501.910.912.712.661.791.541.871.531.711.391.091.521.221.921.271.561.371.99
0.90

0.92

0.94

0.96

0.98

1.00

1.02

bz
ip
2

cr
af

ty
ga

p
gc

c
gz

ip
m

cf

pa
rs

er
pe

rl

tw
ol
f

vo
rte

x

vp
r p

l

vp
r r

t

in
t a

vg

am
m

p

ap
pl
u

ap
si ar

t

eq
ua

ke

m
es

a

m
gr

id
sw

im

fp
 a

vg

IP
C

ENF

NOT-ENF

Figure 5. The Spec 2000 benchmarks running on a 4­wide baseline superscalar. The number at the

bottom of the bars for each benchmark shows the IPC obtained using an aggressive LSQ with 48

entries in the load queue and 32 entries in the store queue. The LSQ does not suffer from false
memory dependence violations. The Y­axis shows performance normalized to the IPC of the 48x32

LSQ. The left hand bar shows the normalized IPC obtained using a 256 entry, 2­way associative store

forwarding cache, an 8192 entry, 2­way associative memory disambiguation table, and a producer­set

predictor that enforces predicted true, anti, and output dependences. The right hand bar shows the

IPC while running with the SFC and MDT, but with the producer­set predictor enforcing only predicted

true dependences.

4.602.513 4.095.743.663.293.324.863.143.084.613.642.623.032.003.152.903.082.222.284.91
0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

bz
ip
2

cr
af

ty
ga

p
gc

c
gz

ip
m

cf

pa
rs

er
pe

rl

tw
ol
f

vo
rte

x

pl
ac

e
ro

ut
e

in
t a

vg

am
m

p

ap
pl
u

ap
si ar

t

eq
ua

ke

m
gr

id
sw

im

fp
 a

vg

IP
C

lq256, sq256

lq48, sq32

ENF

Figure 6. The Spec 2000 benchmarks running on an 8­wide aggressive superscalar. Results are

normalized to the performance obtained using an idealized 120x80 LSQ. For each benchmark the left

bar shows the normalized IPC obtained using an idealized 256x256 LSQ, while the middle bar shows

the normalized IPC obtained using an idealized 48x32 LSQ. The right bar shows the normalized

IPC obtained using a 1K entry, 2­way associative SFC, a 16K entry, 2­way associative MDT, and a

producer­set predictor that enforces predicted true, anti, and output dependences.

179



load accesses the store’s address) completes after a subse-

quent store and load to the same address have completed.

When stores to the same address are permitted to issue out-

of-order, these false violations can be frequent. Therefore,

Chrysos and Emer’s store-set predictor [5] constrains stores

within the same store set to issue in order. At issue widths

of 16 or more, this serialization of stores causes a severe

drop in performance. To avoid this conservative enforce-

ment of predicted output dependences, Onder and Gupta

propose that memory disambiguation be delayed until re-

tirement. As each load completes it stores the address and

the value it read in a small fully associative buffer. When a

store retires, it searches this associative buffer. If the store

finds a load with matching address but a different value, it

sets the load’s exception bit. If the store finds a load with

matching address and the same value, it clears the load’s ex-

ception bit. A memory ordering violation occurs only if a

load’s exception bit is set when the load reaches the head of

the ROB.

Cain and Lipasti [4] eliminate this associative load buffer

search by replaying loads at retirement. At execution, a load

accesses the data cache and the associative store queue in

parallel. If the load issued before an earlier store with an

unresolved address, then at retirement the load accesses the

data cache again. If the value obtained at retirement does

not match the value obtained at completion, then a memory

dependence violation has occurred, and recovery is initi-

ated.

Roth recently proposed the store vulnerability win-

dow [21], an optimization that reduces the number of loads

that re-execute in systems that disambiguate memory refer-

ences by re-executing loads at retirement, such as [4, 12],

and in systems that perform redundant load elimination.

Although performing disambiguation at retirement does

permit various optimizations of the load queue, the delay

greatly increases the penalty for ordering violations. Fur-

thermore, eliminating the associative store queue (as in our

store forwarding cache) tends to increase the frequency of

false memory ordering violations. We have observed em-

pirically that the performance of a checkpointed processor

with a large instruction window depends strongly on the fre-

quency of memory ordering violations and the associated

recovery penalty. In such processors, disambiguating mem-

ory references at completion is preferable.

Search filtering has been proposed as a technique for de-

creasing the LSQ’s dynamic power consumption [19, 22].

Studies indicate that only 25% - 40% of all LSQ searches

actually find a match in processors with large instruction

windows [2, 22]. The goal of search filtering is to iden-

tify the 60% - 75% of loads and stores that will not find a

match and to prevent those instructions from searching the

LSQ. We view these techniques as orthogonal to the SFC

and MDT. For example, search filtering could dramatically

decrease the pressure on the MDT, thereby offering higher

performance from a much smaller MDT.

To enable construction of high-capacity LSQ’s with low

search latencies, various segmented or hierarchical LSQ’s

have been devised. Both [19] and [1] propose segmenting

and pipelining the LSQ. The segments can then be searched

serially or concurrently. A parallel search achieves lower

search latency at the expense of higher power consumption,

while the latency and power consumption of a serial search

depend on the number of segments searched.

The hierarchical store queue described in [2] includes a

small level-1 store queue that holds the N most recently dis-

patched stores, a larger level-2 store queue that holds all

other in-flight stores, and a membership test buffer that fil-

ters searches of the L2SQ. Both the L1 and L2 store queues

include CAM’s to support associative searches. By contrast,

the hierarchical LSQ of [11] eliminates the CAM from the

L2 store queue. In [11], the L2 LSQ uses a small cache for

store-to-load forwarding, a simple FIFO for in-order buffer-

ing of stores, and an address-indexed, set-associative struc-

ture for memory disambiguation. These structures are sim-

ilar to the SFC and MDT. However, the hierarchical LSQ

maintains a conventional L1 LSQ, and uses the L2 LSQ

only to track loads and stores in the shadow of a long-

latency cache miss.

Torres proposes a distributed, hierarchical store queue in

conjunction with a banked L1 data cache and a sliced mem-

ory pipeline [24]. The hierarchy comprises small L1 store

queues that hold the N stores most recently dispatched to

each L1 data cache bank, and a centralized L2 store queue

that handles overflows from the L1 queues. A bank predic-

tor steers loads and stores to the appropriate cache bank and

store queue.

Timestamp based algorithms have long been used for

concurrency control in transaction processing systems. The

memory disambiguation table in our system is most simi-

lar to the basic timestamp ordering technique proposed by

Bernstein and Goodman [3]. More sophisticated multiver-

sion timestamp ordering techniques [20] also provide mem-

ory renaming, reducing the number of false dependences

detected by the system at the cost of a more complex imple-

mentation.

Knight’s Liquid system [14] was an early thread-level

speculation system that allowed loads to speculatively by-

pass stores that they might depend on. Knight’s system

kept speculative stores in age order by assigning implicit

sequence numbers to the caches of a shared-memory mul-

tiprocessor. The snooping hardware was modified so that

writes only affected caches with higher sequence numbers

and reads only read from caches with lower sequence num-

bers. Age-prioritized associative searches for either store-

to-load forwarding or for memory ordering validation could

then be performed by using the snooping hardware.

180



The influential Multiscalar architecture [8, 23] forcefully

demonstrates the benefits of allowing loads to speculatively

bypass stores. Multiscalar validates memory dependence

speculations using an address resolution buffer (ARB) [9]

that is similar to a hardware implementation of multiversion

timestamp ordering. The ARB performs renaming, but is

address ordered in the sense that multiple loads and stores

to the same address all index into the same ARB row. Each

ARB row is then ordered by sequence number and performs

all three of the functions of the load-store queue: stores are

retired in order, loads search the row in priority-encoded

order to find forwarded store values, and stores search the

row in priority-encoded order to validate load order. More

recent efforts in the thread-level speculation domain have

refocused on Knight’s idea of modifying shared memory

cache coherence schemes to support memory dependence

speculation. An early example is [7].

The idea of speculatively allowing loads to bypass stores

has also been examined in the context of statically sched-

uled machines. For example, Gallagher et al proposed a

small hardware set-associative table, called a memory con-

flict buffer (MCB), that holds recently speculated load ad-

dresses and provides single cycle checks on each subse-

quent retiring store instruction [10]. A structure similar to

the MCB is included in the IA-64.

5. Conclusion

As the capacity of the load/store queue increases to ac-

commodate large instruction windows, the latency and dy-

namic power consumption of store-to-load forwarding and

memory disambiguation threaten to become critical perfor-

mance bottlenecks. By decomposing the LSQ into its con-

stituent functions and dividing those functions among scal-

able structures, we can decrease the latency, complexity,

and dynamic power-consumption of store-to-load forward-

ing and memory disambiguation.

In this paper, we have described a memory dependence

predictor, a store forwarding cache, and a memory disam-

biguation table that yield performance comparable to that

of an ideal LSQ. We have shown that in a conventional su-

perscalar, the predictor, MDT, and SFC yield a 1% decrease

in performance relative to the ideal LSQ, while eliminating

the load queue and all of the LSQ’s associative search logic.

Furthermore, we have shown that in an aggressive super-

scalar with a large instruction window, the predictor, MDT,

and SFC yield performance equivalent to that of a large

LSQ with similar or greater circuit complexity. Finally, we

have shown that loads and stores that violate anti and output

dependences are rarely on a process’s critical path. Enforc-

ing such dependences incurs little additional complexity in

the memory dependence predictor, but greatly increases the

performance of the SFC and MDT.

Acknowledgments

The authors thank Thomas R. Novak for his help with a

preliminary version of this work, and the members of the

University of Illinois Implicitly Parallel Architectures group

for their support in porting benchmarks and debugging the

simulator used in this study. This research was supported

in part by NSF grant CCF-0429711. This material is based

upon work supported under a National Science Foundation

Graduate Research Fellowship.

References

[1] H. Akkary and K. Chow. Processor having multiple program

counters and trace buffers outside an execution pipeline,

2001. U.S. Patent Number 6,182,210.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint

processing and recovery: Towards scalable large instruction

window processors. In MICRO 36, page 423, 2003.

[3] P. A. Bernstein and N. Goodman. Timestamp-based algo-

rithms for concurrency control in distributed database sys-

tems. In Proceedings of the Sixth International Confer-

ence on Very Large Data Bases, pages 285–300, Montreal,

Canada, Oct. 1980.

[4] H. W. Cain and M. H. Lipasti. Memory ordering: A value-

based approach. In ISCA-31, pages 90–101, 2004.

[5] G. Z. Chrysos and J. S. Emer. Memory dependence pre-

diction using store sets. In 25th International Sympo-

sium on Computer Architecture (ISCA-25), pages 142–153,

Barcelona, Spain, June 1998.

[6] K. A. Feiste, B. J. Ronchetti, and D. J. Shippy. System

for store forwarding assigning load and store instructions to

groups and reorder queues to keep track of program order,

2002. U.S. Patent Number 6,349,382.

[7] M. Franklin. Multi-version caches for Multiscalar proces-

sors. In Proceedings of the First International Conference

on High Performance Computing (HiPC), 1995.

[8] M. Franklin and G. S. Sohi. The expandable split window

paradigm for exploiting fine-grain parallelism. In 19th Inter-

national Symposium on Computer Architecture (ISCA-19),

pages 58–67, Gold Coast, Australia, May 1992.

[9] M. Franklin and G. S. Sohi. ARB: A hardware mechanism

for dynamic reordering of memory references. IEEE Trans.

Comput., 45(5):552–571, May 1996.

[10] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllen-

haal, and W. mei W. Hwu. Dynamic memory disambigua-

tion using the memory conflict buffer. In Proceedings of

the 6th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASP-

LOS), pages 183–193, San Jose, California, Oct. 1994.

[11] A. Gandhi, H. Akkary, R. Rajwar, S. T. Srinivasan, and

K. Lai. Scalable load and store processing in latency tol-

erant processors. In ISCA 32, pages 446–457, 2005.

[12] K. Gharachorloo, A. Gupta, and J. Hennessy. Two tech-

niques to enhance the performance of memory consistency

models. In Proceedings of the 1991 International Confer-

ence on Parallel Processing, 1991.

181



[13] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and

A. Yoaz. A novel renaming scheme to exploit value tempo-

ral locality through physical register reuse and unification.

In MICRO-31, pages 216–225, 1998.

[14] T. Knight. An architecture for mostly functional languages.

In Proceedings of the ACM Conference on Lisp and Func-

tional Programming, pages 88–93, Aug. 1986.

[15] D. Leibholz and R. Razdan. The Alpha 21264: A 500 MHz

out-of-order execution microprocessor. In IEEE COMP-

CON 42, 1997.

[16] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S.

Sohi. Dynamic speculation and synchronization of data de-

pendences. In ISCA-24, pages 181–193, 1997.

[17] A. Moshovos and G. S. Sohi. Streamlining inter-operation

memory communication via data dependence prediction. In

MICRO-30, 1997.

[18] S. Onder and R. Gupta. Dynamic memory disambiguation

in the presence of out-of-order store issuing. In MICRO-32,

pages 170–176, 1999.

[19] I. Park, C. L. Ooi, and T. N. Vijaykumar. Reducing design

complexity of the load/store queue. In MICRO 36, pages

411–422, 2003.

[20] D. P. Reed. Implementing atomic actions on decentralized

data. ACM Trans. Comput. Syst., 1(1):3–23, Feb. 1983.

[21] A. Roth. Store vulnerability window (SVW): Re-execution

filtering for enhanced load optimization. In ISCA 32, pages

458–468, 2005.

[22] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and

S. W. Keckler. Scalable hardware memory disambiguation

for high ilp processors. In MICRO 36, pages 399–410, 2003.

[23] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Mul-

tiscalar processors. In 22nd International Symposium on

Computer Architecture, pages 414–425, Santa Margherita

Ligure, Italy, June 1995.

[24] E. F. Torres, P. Ibanez, V. Vinals, and J. M. Llaberia. Store

buffer design in first-level multibanked data caches. In ISCA

32, pages 469–480, 2005.

[25] G. S. Tyson and T. M. Austin. Improving the accuracy and

performance of memory communication through renaming.

In MICRO-30, 1997.

[26] K. C. Yeager. The MIPS R10000 superscalar microproces-

sor. IEEE Micro, 16(2):28–40, 1996.

182


