

LPTHREAD: A WORK-EFFICIENT THREAD MODEL FOR LOOP PARALLELIZATION

BY

THOMAS WEI-PING SOONG

B.S., University of Illinois at Urbana-Champaign, 2002

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2004

Urbana, Illinois

ii

iii

ABSTRACT

This thesis describes LPthread (Loop Parallelization Thread), a thread model designed to aid the

process of exploiting thread- level parallelism in sequential programs through loop parallelization.

The LPthread model provides a deadlock-free environment for exploiting loop parallelization by

imposing thread creation constraints and by assigning thread priorities according to the serial

program’s control flow sequence. The spawn constraints allow the parallel program to fall back

on the original sequential order and avoid deadlock. Moreover, the LPthread model provides an

efficient infrastructure to resolve inter-thread dependencies. Communication between LPthreads

has the same cost as a typical store instruction. Finally, the LPthread model is work efficient on

parallelized sequential programs. The performance of an LPthread program with minimal inter-

thread dependencies increases almost linearly with the number of processing units. To maximize

performance, an LPthread can also be speculatively spawned.

iv

To Mom and Dad

v

ACKNOWLEDGMENTS

Like my thesis, I will keep this section short and sweet. While I have dedicated this work to my

parents, I will not attempt to pay tribute to them, since I can never fully express my gratitude for

their infinite contributions and sacrifices. I can only use this opportunity to say, "Thank you."

While numerous people brought inspiration to my research, this thesis owes greatly to my

adviser, Professor Matthew Frank, for his wisdom and patience. Being Matt's first research

student to write a thesis, I hope to make him proud. As countless computer architects make their

contributions toward faster computing, here is mine.

vi

TABLE OF CONTENTS

1 INTRODUCTION 1
 1.1 Finding Thread-Level Parallelism . 1
 1.2 A Good Thread Model . 3
 1.3 Related Work . 4

2 WHAT IS AN LPTHREAD? 6
 2.1 Communication Queues . 6
 2.2 Status Bits . 7

3 THREAD STATES . 9

4 INTERFACE . 10
 4.1 LPthread* spawn(void*(*start_routine)(), int
 num_Cbits, bool start_state) 10
 4.2 void update_Cbit(int Cbits_index) 11
 4.3 void test_Cbit() . 12
 4.4 void stop() .. 12

5 LPTHREADS IN ACTION . 13
 5.1 Exploiting Parallelism with LPthreads . 14
 5.2 Exploiting Even More Parallelism with LPthreads 17

6 SCHEDULER . 19
 6.1 Handling Instruction Primitives . 19
 6.2 Memory Management . 19
 6.3 Deadlock-Free Thread Selection . 20

7 DISCUSSION . 23
 7.1 Serial/Parallel Program Interpolation . 23
 7.2 Efficient Communication and Fast Wake-Up 23
 7.3 Compiler Support . 26
 7.4 Hardware Support . 26
 7.5 The Scheduling Algorithm in Hindsight . 27
 7.6 Memory Speculation . 28
 7.7 Speculative Thread Spawn . 28

8 CONCLUSION . 29

 REFERENCES 30

1

1 INTRODUCTION

In the effort to achieve higher microprocessor performance, the exploitation of instruction- level

parallelism (ILP) of sequential programs in dynamically scheduled superscalar processor has

been the most dominant trend in both hardware [1]-[3] and software [4]-[6]. Nevertheless, the

diminishing returns of wider instruction issue, as well as increasing on-chip memory have driven

hardware and compiler designers to investigate more aggressive techniques for discovering

program parallelism. Eventually all high-performance processors will exploit the benefits of

thread- level parallelism, such as simultaneous multithreading (SMT) [7] or chip-scale

multiprocessing (CMP) [8]. Since traditional ILP techniques are targeted for single thread

execution, its benefit is very limited on multithreaded machines. While it is obvious that parallel

application is needed for such architecture, automatic parallelization of general purpose

programs is required for it to be successful. This thesis contributes a novel thread model that

aids the process of exploiting thread- level parallelism in sequential programs through loop

parallelization.

1.1 Finding Thread-Level Parallelism

Thread- level parallelism can be exploited by utilizing the fundamental property of control- flow

independence in do-across loops. As demonstrated by Lam and Wilson's [9] and Rotenberg et

al.'s [10] limit studies on control independence, substantial performance improvement can be

gained. The mechanism of exposing thread- level parallelism in N-dimensional nested do-across

loops is best explained by example.

2

Figure 1: An example of a doubly nested loop with nested parallelism, where
concurrency can be exploited by simultaneously executing different use1() and
use3() across different iterations.

Consider the doubly nested loop in Figure 1 that contains multiple loop-carried dependencies,

and assume that each use subroutine requires substantial execution time. Sequentially, the next

iteration of the outer loop cannot commence execution until its inner loop is completed, and the

loop-carried dependent variables i and y are resolved. On the other hand, the data- independent

subroutine use1() for the next iteration of the outer loop can be executed either as soon as the

loop-back condition is satisfied, i.e., i < N, or speculatively. Therefore, the outer loop can be

parallelized by having as many use1() subroutines in flight as possible. The same

parallelization technique can be applied to the use3() subroutine within the inner loop.

Therefore, the doubly nested loop is parallelized by simultaneously executing different use1()

and use3() across different iterations while the iterations' loop-carried dependencies are being

resolved. Furthermore, parallelism is extracted from all loop levels, and execution can be

speculative. In essence, the multithreaded machine executes ahead of the sequential code by

extracting and executing data- independent as well as control- independent instructions within the

nested loop.

1 do
2 j = 0
3 i = i + 1
4 use1()
5 y = use2(y)
6 do
7 j = j + 1
8 use3()
9 y = use4(y)
10 while j < M
11 while i < N

3

1.2 A Good Thread Model

Aside from extracting parallelism from all loop levels, a successful thread model for loop

parallelization must overcome three challenges:

(1) The thread model must guarantee the parallelized program's forward progress.

(2) The thread model must provide efficient channel for interthread communication.

(3) The thread model must maintain load balance on multithreaded machines.

While the purpose of automatic parallelizing sequential programs is to maximize performance,

program correctness remains the primary objective. Not only must the parallel program produce

the same result as its sequential counterpart, it must also never deadlock, which is the most

common predicament in parallel programming.

Since the compiler transforms all parallelized loop iterations into threads, loop-carried

dependencies becomes interthread dependencies. The thread model must establish a low

overhead communication channel to quickly resolve these dependencies that hinder parallelism.

To ensure that no processing unit's resource is going to waste while another processing unit is

overstressed, the thread model's scheduling algorithm must also be work-efficient and maintain

load balance on all its processing units. A parallel program is constrained by the work and

critical path [11]. The work T1 is the execution time of the original sequential program on one

processing unit. The critical path T8 is the ideal execution of the parallel program on infinite

processing units and proportional to the height of the program's control dependence graph. The

execution time of the parallel program executing on P processors with a work-efficient thread

model is Tp = O(T1/P+T8).

4

The Loop Parallelization Thread (LPthread) model was designed explicitly to exploit loop

parallelism while meeting the three mentioned requirements. The LPthread model consists of

four atomic operations that can be supported in hardware or emulated in software. The forward

progress of an LPthread program is guaranteed as long as a minimum memory requirement,

proportional to the sequential program's static loop depth, is satisfied in hardware. Meanwhile,

software compiler analysis is needed to fully utilize the LPthread model in thread- level

parallelism.

1.3 Related Work

Several different deadlock-free thread models have been developed for parallel computer

architecture, such as the Provably Efficient Thread model [12] or the Cilk multithreaded

language [11]. While these models are efficient for constructing general parallel applications,

they were not designed to automate sequential code parallelization. Therefore, all programs

using these models must endure the excruciating progress of parallelizing by hand. Meanwhile,

parallel programs using the older Threaded Abstract Machine (TAM) [13] model must also be

rigorously debugged to assure that they are deadlock-free.

On the other hand, several speculatively multithreaded architectures (such as Multiscalar [14]

and The Superthreaded Architecture [15]) have thread models that also exploit control

independence by pursuing multiple flows of control. These thread models can only exploit loop

parallelism in one dimension; i.e., only one loop level's parallelism can be exploited. Therefore,

their potential thread- level parallelism is limited. For example, Multiscalar is incapable of

extracting much thread-level parallelism from the code in Figure 1. Assuming that the outer loop

is parallelized, every iteration of the outer loop must wait for its previous iteration's inner loop to

5

complete in order to resolve the loop-carried dependent variable y. Therefore, the parallel code

becomes highly sequential. The same limitation is exhibited when the inner loop is parallelized.

In contrast, the LPthread model overcomes these limitations by exposing thread-level parallelism

in N-dimensional nested do-across loops.

6

2 WHAT IS AN LPTHREAD?

Like most threads, an LPthread is an independent stream of instructions that shares the process

resources with other LPthreads. Aside from maintaining its own stack pointer, program counter,

and registers, an LPthread also carries its own status bits and communication queues, as shown

in Figure 2.

Figure 2: The structure of an LPthread. The communication queues are needed
for interthread communication while the status bits are used to identify the
thread's state.

2.1 Communication Queues

Any pending data from another thread that is necessary for execution is communicated and

pushed into the communication queue (Cqueue) of the receiving thread. The number of Cqueues

is arbitrary and allocated when the thread is first spawned. Each Cqueue is capable of

communicating with only a single thread. Therefore, if a thread needs to receive data from two

other distinct threads, a minimum of two Cqueues are required. A thread can only access the

Stack Pointer
Prgm. Counter

Register

Spawn_failed
Running
Ready
CbitA
CbitB
·
·
·

CqueueA
CqueueB

·
·
·

St
at

us
 B

its

C
om

m
un

ic
at

io
n

Q
ue

ue
(s

)

7

elements in a Cqueue in first- in first-out (FIFO) order. Finally, a thread can only access the data

in its own Cqueue once the corresponding communication bit (Cbit) is set.

2.2 Status Bits

The three status bits - Ready, Spawn_failed, and Running - can only be manipulated by the

scheduler and are used to determine the current state of the thread. The state transition diagram

is shown in Figure 3.

• Ready bit: A thread's Ready bit is set to 1 only if it is ready for execution; otherwise, it

remains 0. In other words, a thread's Ready bit is set to 1 only when all the interthread

dependencies within its proceeding instructions are resolved.

• Spawn_failed bit: The Spawn_failed bit is initialized to 0 when the thread is first spawned

and is only set to 1 if the current executing thread is unsuccessful in spawning a child

thread.

• Running bit: When the Running bit is set to 1, it indicates that the thread is currently being

executed. Conversely, a Running bit of 0 specifies that the current thread is idle.

• Cbit: With each allocated Cqueue there is a corresponding Cbit. The Cbit reflects the

status of its Cqueue. By default, the Cbit is initialized to 0, and only the thread

communicating with the corresponding Cqueue is able to set it to 1. As a rule, the Cbit

should only be set to 1, if and only if its Cqueue has received all its messages. In other

words, once the Cbit is set to 1, no more data can be stored into the Cqueue. All allocated

Cbits form a FIFO structure. While the communicating thread(s) can write to each

individual Cbit of the receiving thread. The receiving thread can only read its Cbits in

FIFO fashion.

8

Figure 3: The state transitions of an LPthread. The outputs in each state
correspond to how the scheduler will manipulate the thread's status bit during
state transitions. The outputs on the edges represent the condition that would
invoke a state change from the scheduler.

YIELD
Ready = 0
Running = 0

*Spawn_failed = 1

WAKEUP
Ready = 1
Running = 0

Spawn_failed = 0

EXECUTE
Ready = 1
Running = 1

Spawn_failed = 0

Selected by
Scheduler

Head Cbit == 1
or

Enough resource
available to spawn

child thread

Test_Cbit failed
or

*Failed to spawn
child thread

Test_Cbit successful

9

3 THREAD STATES

As shown in Figure 3, an LPthread has only three possible states: YIELD, WAKEUP, and

EXECUTE. Only the scheduler can change the state of a thread.

1. YIELD: A thread can yield for three reasons. First, if the executing thread attempts to

spawn a child thread and fails, its Spawn_failed bit is set to 1 by the scheduler and the

thread yields. Second, an executing thread yields when its test_Cbit operation fails,

since it currently does not have the required data to continue execution. Finally, the

LPthread is initialized to be in the yielded state when it was first spawned. Hence, the

yielded thread must have its head Cbit updated by an executing thread for it to wake up.

2. WAKEUP: Just as there are two ways to yield an executing thread, there are two way to

wake up a yielded thread. All threads that are woken up have their Ready bit set to 1. First,

a yielded thread with its Spawn_failed bit set to 1 will wakeup once the scheduler has

determined that enough resources have been freed to wakeup the thread and retries its

spawn of a child thread. Meanwhile the scheduler will reset the thread's Spawn-failed bit

to 0 and set the Ready bit to 1. Second, a thread can wakeup when its Cbit is updated to 1.

If an LPthread's Ready bit is already set to 1, then the LPthread has already woken up and

the scheduler does nothing. Conversely, the schedule will wake up the LPthread by setting

its Ready bit to 1, if the updated Cbit is at the head of the Cbit queue and the Spawn_failed

bit is 0. Finally, a thread can also start from WAKEUP state when it was first spawned.

3. EXECUTE: As discussed later, the scheduler is responsible for selecting threads for

execution from the pool of thread in the WAKEUP state. Any thread that enters the

EXECUTE state will have its Running bit set to 1. Meanwhile, a thread can either yield

during its execution or retire once it is completed.

10

4 INTERFACE

The LPthread interface is a set of primitives that is used for both interthread communication and

communication with the scheduler. Moreover, each primitive must be executed atomically

without interruption. For explanation purposes, the interface is shown in C syntax.

4.1 LPthread* spawn(void*(*start_routine)(), int
 num_Cbits, bool start_state)

The spawn primitive is use to create a child thread and requires three parameters. If successfully

spawned, the child thread is created to execute start_routine. Also, the number of

Cqueues and Cbits allocated to the child thread will be equal to num_Cbits. The

start_state parameter is used to initialize the initial state of the spawning child thread.

When first spawned, a thread can be in the YIELD state, start_state = 0, or the

WAKEUP state, start_state = 1. However, if num_Cbits = 0, the thread defaults to

the WAKEUP state, since the spawning thread does not need to be synchronized.

As mentioned earlier, if a thread starts from the YIELD state, it implies that the LPthread

requires data from another LPthread to commence execution. Therefore, the thread will only

wake up once its pending data are received. On the other hand, a thread that is spawned to the

WAKEUP state can immediately begin execution without waiting for any other thread. Hence,

all the instructions from the beginning of the LPthread up until the first test_Cbit operation

are all data-independent from any other spawned thread. Nevertheless, an LPthread initialized to

the WAKEUP state does not suffer from deadlock even if the beginning instructions contain

interthread dependencies. As mentioned later, the dependent LPthread would simply yield

during its test_Cbit operation, where the depending LPthread will later wake it up.

11

Consequently, an LPthread is only initialized to the WAKEUP state as a performance

optimization, not to maintain program correctness.

As a rule, a thread can only spawn one child thread for any level of a nested loop. Therefore, a

thread executing a doubly nested loop can only spawn a maximum of two child thread. With one

thread corresponding to the next outer loop while the other thread is the next inner loop. More

importantly, the child threads' execution must correspond to the loop level at which they were

created. In other words, if a thread is spawned at the outer loop level of its parent, it must

execute the next iteration of the outer loop. As discussed in Chapters 6 and 7, this constraint is

critical in ensuring that the LPthread model is deadlock-free.

If the spawn operation is successful, the scheduler will return a thread pointer to the parent

thread, which contains the address of the child thread. The thread pointer is used for

communicating with child thread. In effect, any subsequent thread that is spawn from the parent

can have access to the thread pointer by having it passed in to its Cqueue. Hence, they will also

be able to communicate with the child thread. Conversely, if the spawn fails due to insufficient

memory, then the parent thread yields and will retry again once enough system resource has been

freed up.

4.2 void update_Cbit(int Cbits_index)

The update_Cbit primitive sets the receiving thread's Cbit[Cbits_index] to 1. A

receiving thread's Cbit should only be updated by the sender after all the messages have been

stored into the correspond Cqueue of the receiving thread. Since all the messages in a Cqueue

12

originate from a single sender, only the sender is authorized to manipulate the Cqueue's

corresponding Cbit on the recipient.

4.3 void test_Cbit()

The test_Cbit operation reads the front element of its Cbit queue and is considered

successful only when the front element is set to 1. If the head Cbit is 1, the scheduler dequeues

the front element, and the calling thread continues execution. If the head Cbit is 0, the Cbit

queue remains untouched. Furthermore, the calling thread must yield itself until its head Cbit is

updated to 1. When the thread reenters the EXECUTE state, it will retry the test_Cbit

operation. Hence, a thread can continue its execution only until its test_Cbit operation is

successful. A thread can access its Cqueue only when the test_Cbit operation for the

corresponding Cbit is successful, thus assuring that all messages arrived to the Cqueue. Since

the test_Cbit only checks for the head Cbit, the Cqueues are accessed in the same sequence

of its Cbits in the Cbit queue.

4.4 void stop()

The stop operation is executed only when a thread has completed its execution; therefore, it is

the last operation that the calling thread will perform. Aside from deallocating the resources

used by the current thread, this operation also signals the scheduler to assign the processing unit

a new thread for execution. Moreover, if any of the yielded threads have its Spawn_failed bit set

to 1, the scheduler will examine if the newly available resources are enough to wake up the

oldest thread that experienced an unsuccessful thread spawn.

13

5 LPTHREADS IN ACTION

The mechanism for thread level parallelism using LPthreads is best explained by example.

Consider the code in Figure 4; the code depicts an ideal case for loop parallelization, where

almost no interloop data dependence exists. It is a triply nested loop where the number of

iteration for each level of the loop is arbitrary. The only interloop dependencies are the iteration

counters i, j, and k, which are used to identify the loops' end conditions. The subroutines

use1, use2, and use3 are completely data- independent and can execute in parallel when

called. Therefore, significant parallelism can be found by concurrently executing as many

use1s, use2s, or use3s as possible.

Figure 4: An example program with a triply nested loop. Significant parallelism
can be found with LPthreads by concurrently executing as many use1s, use2s,
or use3s as possible.

main()
{
 i = 0;
 do
 j = 0;
 use1()
 do
 k = 0;
 use2()
 do
 use3()
 k = k + 1
 while (k < c)
 j = j + 1
 while (j < b)
 i = i + 1
 while (i < a)
}

14

5.1 Exploiting Parallelism with LPthreads

Figure 5 shows how LPthread can transform the code in Figure 4 to extract thread level

parallelism. Since the code consists of three do-while loops, any iteration of the outer loop will

encounter at least one iteration of the middle loop and the inner loop. Similarly, an iteration of

the middle loop will guarantee an iteration of the inner loop.

Let us first examine the main thread. As stated before, LPthread can only spawn one thread in

each loop level. Hence, a maximum of three threads be can spawned in the main thread. To

maximize parallelism, the main thread checks the end condition for each level of the loop while

spawning up to three different threads outer, middle, and inner.

Assuming that variable a is greater than 1, the outer loop will execute more than once and the

main thread will first spawn a thread of outer. Since the only inter- loop data dependency in

the outer loop is the variable i, only one Cbit and Cqueue is needed by the child thread.

Therefore, the main thread creates an LPthread that executes the next outer loop by doing

spawn(outer,1,0), which returns a pointer of the child thread and is stored in

thread_ptr1. Since the outer child thread is initialized to the YIELD state, it cannot

execute until i is received from the previous iteration.

The main thread must communicate with its outer child. The main thread stores the variable

i in its child Cqueue through the thread pointer and updates its child's Cbit to wake up the thread.

Similarity, the main thread spawns its middle and inner child threads if the values of b and

c are greater than 1. After spawning all its children, the main thread proceeds to execute the

use subroutines in the first iteration of each level of the triply nested loop. Hence, use1, use2,

15

Figure 5: Using LPthread to exploit loop level parallelism from the code in
Figure 4. Each block of code is an LPthread.

and use3 are all executed once in the main thread. Finally, the main thread performs the

stop operation before it retires.

main()
{

i = 1
j = 1
k = 1
if (i < a)
 thread_ptr1 = spawn(outer,1,0)
 thread_ptr1->Cqueue[0].enqueue(i)
 thread_ptr1->update_Cbit(0)
if (j < b)
 thread_ptr2 = spawn(middle,1,0)
 thread_ptr2->Cqueue[0].enqueue(j)
 thread_ptr2->update_Cbit(0)
if (k < c)
 thread_ptr3 = spawn(inner,1,0)
 thread_ptr3->Cqueue[0].enqueue(k)
 thread_ptr3->update_Cbit(0)
use1()
use2()
use3()
stop

}

outer()
{
 j = 1
 k = 1
 test_Cbit
 i = Cqueue[0].dequeue
 i = i + 1
 if (i < a)
 thread_ptr1 = spawn(outer,1,0)
 thread_ptr1->Cqueue[0].enqueue(i)

thread_ptr1->update_Cbit(0)
 if (j < b)
 thread_ptr2 = spawn(middle,1,0)
 thread_ptr2->Cqueue[0].enqueue(j)

thread_ptr2->update_Cbit(0)
 if (k < c)
 thread_ptr3 = spawn(inner,1,0)
 thread_ptr3->Cqueue[0].enqueue(k)
 thread_ptr3->update_Cbit(0)
 use1()
 use2()
 use3()
 stop
}

middle()
{
 k = 1;
 test_Cbit
 j = Cqueue[0].dequeue
 j = j + 1
 if (j < b)
 thread_ptr1 = spawn(middle,1,0)
 thread_ptr1->Cqueue[0].enqueue(j)

thread_ptr1->update_Cbit(0)
 if (k < c)
 thread_ptr2 = spawn(inner,1,0)
 thread_ptr2->Cqueue[0].enqueue(k)
 thread_ptr2->update_Cbit(0)
 use2()
 use3()
 stop
}

inner()
{
 test_Cbit
 k = Cqueue[0].dequeue
 k = k + 1
 if (k < c)
 thread_ptr1 = spawn(inner,1,0)
 thread_ptr1->Cqueue[0].enqueue(k)
 thread_ptr1->update_Cbit(0)
 use3()
 stop
}

16

Figure 6: A graphical representation of the code in Figure 5, assuming a, b, and
c all equal 2. The numbers in parentheses correspond to the program's loop
iteration, (i,j,k), while acting as indices for each node. For example, the
thread on node (1,0,0) has its i = 0, j = 0, and k = 0. Each box in the
figure represents a thread, and the solid lines show the hierarchy of all the spawn
threads and illustrate the total amount of loop parallelism. In contrast, the dotted-
lines reveal the sequential ordering of the code if it was executed serially.

After examination, it is obvious that the code for the main thread and the outer thread are very

similar. The only difference is their usage of the variable i. Unlike the main thread, which

initializes the variable i, the outer thread must receive the value for i from the thread

executing the previous outer loop iteration. Consequently, the outer thread must perform a

test_cbit operation to check if it has received the value of i. If the test_cbit is

successful, the thread then dequeues the value from the Cqueue and stores it locally. The

middle and inner threads both share the same structure with the outer thread. Figure 6

gives a graphical representation of the code in Figure 5, assuming a, b, and c all equal 2.

(0,0,1)
inner

(0,1,1)
inner

(1,0,1)
inner

(1,1,1)
inner

(0,0,0)
main

(0,1,0)
middle

(1,0,0)
outer

(0,1,0)
middle

START!

17

5.2 Exploiting Even More Parallelism with LPthreads

To further demonstrate the versatility of LPthread, we can decrease the granularity of each thread

and extract even more parallelism, as shown in Figure 7. Instead of having three threads

(outer, middle, and inner) that represent the different level of the nested loop, we now

create three threads that represent the execution of each subroutine: use1, use2, and use3. As

evident from the code in Figure 7, each thread carries only one use subroutine. Again, LPthread

can spawn only one thread in each loop level. Aside from the thread that executes the use3

subroutine, which is executed only in the inner loop, each thread can now spawn a maximum of

two child threads.

Figure 7: Using LPthread to exploit even more loop level parallelism from the
code in Figure 4 by reducing the grain size of the threads.

main()
{

i = 1;
j = 0;
if (i < a)
 thread_ptr1 = spawn(do_use1,1,0)
 thread_ptr1->Cqueue[0].enqueue(i)
 thread_ptr1->update_Cbit(0)

 thread_ptr2 = spawn(do_use2,1,0)
thread_ptr2->Cqueue[0].enqueue(j)
thread_ptr2->update_Cbit(0)
use1()
stop

}

do_use1()
{
 j = 0;
 test_Cbit
 i = Cqueue[0].dequeue
 i = i + 1
 if (i < a)
 thread_ptr1 = spawn(do_use1,1,0)
 thread_ptr1->Cqueue[0].enqueue(i)
 thread_ptr1->update_Cbit(0)
 thread_ptr2 = spawn(do_use2,1,0)
 thread_ptr2->Cqueue[0].enqueue(j)
 thread_ptr2->update_Cbit(0)
 use1()
 stop
}

do_use2()
{
 k = 0;
 test_Cbit
 j = Cqueue.dequeue
 j = j + 1
 if (j < b)
 thread_ptr1 = spawn(do_use2,1,0)
 thread_ptr1->Cqueue[0].enqueue(j)
 thread_ptr1->update_Cbit(0)
 thread_ptr2 = spawn(do_use3,1,0)
 thread_ptr2->Cqueue[0].enqueue(k)
 thread_ptr2->update_Cbit(0)
 use2()
 stop
}

do_use3()
{
 test_Cbit
 k = Cqueue[0].dequeue
 k = k + 1
 if (k < c)
 thread_ptr1 = spawn(do_use3,1,0)
 thread_ptr1->Cqueue[0].enqueue(k)
 thread_ptr1->update_Cbit(0)
 use3()
 stop
}

18

Figure 8 gives a graphical representation of the code in Figure 7. Notice that the dash boxes

surrounding each use1, use2, and use3 thread with the same indices are the equivalents of the

outer, middle, and inner threads in the Figure 6.

Figure 8: A graphical representation of the code in Figure 7 using the same
assumptions and symbols as in Figure 6. All nodes boxed within the dash-lines
correspond to the same thread with the same indices in Figure 6. More
parallelism is exposed by splitting the dash-line threads into smaller threadlets.

Finally, while all the spawn threads in Figures 5 and 7 are initialized to start in the YIELD state,

the code will be equally correct if they start from the WAKEUP state. For example, if the

outer thread starts out in the WAKEUP state, it could begin executing all instructions before

its test_cbit operation. Meanwhile, if the outer thread's parent managed to send the

message to its child's Cqueue and updates its child's Cbit, the outer thread will successfully

complete its test_cbit operation and continue execution. Otherwise, the outer thread will

yield and wait for its parent. The code in Figure 7 exposes more parallelism by spawning more

threads and having more use subroutines simultaneously in flight. On the other hand, it is also

more sensitive to the cost of a thread spawn than the code in Figure 5.

19

6 SCHEDULER

The scheduler is by far the most important component of the LPthread and performs three critical

tasks. First, the scheduler processes all the atomic operation mention in Section 4. Second, the

scheduler is in charge of memory allocation for newly spawned thread as well as memory

deallocation when the thread retires. Finally, the scheduler is responsible of selecting the proper

threads for execution, such that the system can guarantee forward progress.

6.1 Handling Instruction Primitives

All four primitives presented in Chapter 4 communicate directly with the scheduler. Stores to

the Cqueues are the only LPthread related operation that bypasses the scheduler and does directly

to memory. For the LPthread model to remain deadlock-free, the scheduler must guarantee the

atomicity of each operation communicated from a thread to the scheduler. The scheduler

handles all requests in FIFO order and only starts handling a new request once it has completely

processed the previous one.

6.2 Memory Management

While the goal of LPthread is to exploit as much thread level parallelism as possible, it must also

adhere to memory resource constraint. Consequently, the LPthread scheduler monitors the total

memory usage of all its spawned threads. When a processing unit requests a thread spawn, it is

the scheduler's job to verify that enough memory can be allocated for the new thread. If the

available memory resource is insufficient, the scheduler will yield the requesting thread.

Meanwhile, the scheduler must also deallocate all threads from memory that executes the stop

operation while examining if the newly available resource is enough to wakeup a yielded thread

with it Spawn_failed bit set to 1.

20

6.3 Deadlock-Free Thread Selection

In general, the scheduler selects a WAKEUP thread for execution when the number of currently

running threads is less than the maximum number of running threads. In addition, the scheduler

will try to select a new WAKEUP thread for execution when a running thread yields or retires.

A thread model is only viable if it is deadlock-free. To guarantee forward progress, the

scheduler must correctly prioritize all its threads. For example, if all threads have equal priority,

the code in Figure 5 might end up heavily spawning and executing outer loop threads while the

inner loop thread remains idle. Deadlock occurs when enough of the outer loop threads exist

while consuming all the available memory; hence, no inner loop thread can either spawn or

execute.

Since LPthread is designed to exploit thread level concurrency in serial programs through loop

parallelization, any code that is transformed to utilize LPthread will still maintain the original

sequential program's serial ordering. The LPthread scheduler uses this serial ordering to

guarantee forward progress.

The LPthread scheduler assigned priority to the threads according their control- flow sequence

within the serial program, which is made available to the scheduler through the spawn

constraints in Chapter 4. In other words, in a single threaded system, a program that utilizes the

LPthread model will execute in the exact same control- flow order as its sequential counterpart.

To further illustrate, Figure 9 shows how the LPthread scheduler will prioritize the threads in

Figure 6.

21

Highest Priority (0,0,0)
 (0,0,1)
 (0,1,0)
 (0,1,1)
 (1,0,0)
 (1,0,1)
 (1,1,0)
Lowest Priority (1,1,1)

Figure 9: The thread priority of each node in Figure 6 corresponds to
lexicographic ordering.

Notice that the priority scheme corresponds to the control- flow sequence of Figure 6, shown in

dotted- lines. Deadlock is prevented because the thread that immediately proceeds next in the

control- flow sequence is guaranteed to execute.

The scheduler implements the above priority scheme, by building a Spawn Tree. A Spawn Tree

is a directed acyclic graph of all the spawned threads in the system, similar the ones shown in

Figures 6 and 8. Every node represents a spawned thread while holding all the status bits of the

thread. The node's parent corresponds to the LPthread that created the node. The node's child

corresponds to all child threads that it created. In addition, a node's rightmost child points to its

oldest child thread or the child thread spawned on its outermost loop. In contrast, a node's

leftmost child points to its youngest child thread or the child thread spawned on it innermost loop.

The scheduler makes a thread selection by performing a depth first preorder search on its Spawn

Tree for a thread in the WAKEUP state, i.e., nodes with its Ready bit set to 1 and Running bit set

to 0. The scheduler immediately ends the search when a thread in the WAKEUP state is found,

moved to the EXECUTE state, and is assigned to a processing unit.

22

To illustrate, assume that all threads in Figure 8 are in the WAKEUP state. If one was to

traverse the Spawn Tree in Figure 8 while assigning the highest priority for the first node found

in the WAKEUP state and assigning the lowest priority for the last node found in the WAKEUP

state, a depth first search traversal would render the exact same result as shown in Figure 9.

In order to keep the scheduler efficient, the Spawn Tree should be as compact as possible to

minimize search time. The LPthread scheduler compacts its Spawn Tree by retiring nodes that

are no long needed. Each node tracks the number of direct descendents it has, which we call

child nodes. A node can be retired only if the following two conditions are met:

(1) The node's corresponding LPthread have retired.

(2) The node has at most one child node.

Obviously, a node cannot retire and unlink itself from the Spawn Tree immediately after its

thread finishes execution, since its children nodes will also become unlinked. A node is removed

immediately from the Spawn Tree once the two conditions are met. A node without any child

node is removed from the Spawn Tree as soon as its thread retires. Meanwhile, a node with only

one child node must not only unlink itself from its parent node upon removal but also link its

child node to its parent node.

23

7 DISCUSSION

In this section, the strengths and weakness of the LPthread model are discussed. This section

also evaluates many of the design considerations for the LPthread model. The LPthread model is

work-efficient with minimal hardware support while allowing the communications between

LPthreads to have the same cost as a typical store instruction. Meanwhile, serializing the

scheduler's incoming request might hinder overall system performance.

7.1 Serial/Parallel Program Interpolation

While the LPthread was mainly designed to provide a deadlock-free model for exploiting thread-

level parallelism in sequential programs, LPthread is also intended to be work-efficient. Since

LPthread is used to parallelize loops in a sequential program, an LPthread will create at least one

child thread during its execution, depending on the depth of the loop in the sequential program.

Assuming that each LPthread is independent, as the number of processing units increases, so

does the number of in-flight LPthreads. For example, at steady state, the number of in-flight

LPthreads = maximum depth of a loop + number of processing units. Therefore, the

performance of an LPthread program with minimal interthread dependencies increases almost

linearly with the number of processing units. As stated in Section 1.2, the LPthread model

achieves an execution time of Tp = O(T1/P+T8).

7.2 Efficient Communication and Fast Wake-Up

Ideally, every LPthread should be independent to achieve maximum thread-level parallelism;

however, loop carried dependencies are common in sequential programs. Consequently, the

LPthread model must handle interthread dependencies efficiently by ensuring a low overhead

interthread communication and by having a fast wake-up once the dependencies are resolved.

24

The mechanism for LPthread communication is best explained by example. Figure 10

demonstrates how a singly nested loop can be parallelized with LPthreads. Although the serial

code contains three loop carry dependencies (variables i, x, and y) subroutines use1 and use2

are data- independent. To maximize performance, the parallelized loop executes as many

instances of use1 and use2 as possible while the loop carry dependencies x and y are being

resolved.

Figure 10: Parallelizing a simple singly nested loop with LPthread.

The parallelized loop iteration is divided into two execution phases, separated by its two

test_Cbit operations. The first execution phase consists of line 1 ~ line 9, where the code

receives its loop carry dependent variable i, computes the new i value for the next iteration,

spawns the next loop iteration, sends the new i value to its child thread, and completes

subroutines use1 and use2. The second execution phase consists of line 10 ~ 18, where the

code receives loop carry dependent variables x and y; computes the new x and y value for the

loop()
{
 1 test_Cbit
 2 i = Cqueue[0].dequeue
 3 if (i < N)
 4 i = i + 1
 5 thread_ptr1 = spawn(loop,2,0)
 6 thread_ptr1 = Cqueue[0].enqueue(i)
 7 thread_ptr1->update_Cbit(0)
 8 use1()
 9 use2()
 10 test_Cbit
 11 x = Cqueue[1].dequeue
 12 y = Cqueue[1].dequeue
 13 x = use3(x)
 14 y = use4(y)
 15 thread_ptr1->Cqueue[1].enqueue(x)
 16 thread_ptr1->Cqueue[1].enqueue(y)
 17 thread_ptr1->update_Cbit(1)
 18 use5(x,y)
}

1 do
2 i = i + 1
3 use1()
4 use2()
5 x = use3(x)
6 y = use4(y)
7 use5(x,y)
8 while i < N

Parallelize with
LPthread

Serial Loop Parallelized Loop

25

next iteration by executing subroutines use3 and use4, respectively; sends the new x and y

value to its child thread; and completes the iteration by executing use5.

Although every thread communicates only with its parent, each thread utilizes two Cqueues, one

for each execution phase. Once all the necessary message is sent to Cqueue[0], the thread not

only executes its own instructions in the first execution phase but also starts execution of the next

loop iteration in parallel. The domino process of executing a thread while spawning a new

thread is continued until either the system's memory resource is depleted or the loop's stopping

condition is met, e.g., i >= N. Meanwhile, as all the necessary messages are sent to Cqueue[1],

another domino process takes place. The thread not only is woken up to complete its own

instructions in the second execution phase but also resolves the next iteration's loop carry

dependencies and wakes up its child thread for execution. The serial loop is parallelized by

allowing simultaneous execution of use1, use2, and use5 from different loop iterations.

Since a loop iteration is broken up into execution phases, upon completion of the thread's first

execution phase, it will yield unless the dependencies for the second execution are resolved.

Unlike most thread models that perform interthread communication through either atomic

operations or locking mechanisms, LPthreads communicate between threads with a simple store

operation. As shown in Figure 10, both enqueue and dequeue operations are non-atomic and

lock free; therefore, communications between LPthreads does not hinder system performance. A

thread waiting on multiple messages is only awoken once its head Cbit is explicitly set by the

sender; the messages are automatically queued. Since every Cqueue can receive messages from

only one sender, this feature allows the immediate wake up of an LPthread while eliminating the

need for dependency counters. By assigning exclusive communication channels to each of the

26

LPthread's senders, communication between LPthreads has the same cost as a typical store

instruction. Also, by making thread wake-up explicit across the communication channels,

yielded LPthreads wake up with low overhead.

7.3 Compiler Support

Obviously, the LPthread model requires enormous compiler support for finding thread level

parallelism through control dependence analysis and data dependence analysis. Although every

loop with a sequential program can be transformed into an LPthread and maintain program

correctness, such ad hoc approach will most likely degrade performance. Therefore, the

compiler must account for the spawn and communication cost of a thread when determining

whether a particular loop should be parallelized.

7.4 Hardware Support

For an LPthread program to be completely deadlock-free, the system must meet the minimum

memory requirement of the program. In other words, the system must have at least enough

memory resource to execute the program's largest thread and successfully spawn its child

thread(s). We define a program's largest thread to be the thread that requires the most memory

resources to execute. The memory requirement of the largest thread can be evaluated statically,

since it is proportional to the largest thread's static loop level.

As mentioned in Chapter 4, the system must support four primitives for the LPthread model to be

successful. It is also worthwhile to implement LPthread scheduling algorithm, Section 6.3, in

hardware, since it is such an intricate part of the thread model. Figure 11, shows a logic diagram

of how the Scheduler can be implemented in hardware. All requests from the processing units

go through the Message Arbitrator and are pushed onto the Request Queue. The Scheduler

27

handles the request in FIFO order from the Request Queue and replies back to a Processing Unit

through the Message Arbitrator.

Figure 11: The relationship between the Scheduler and the Processing Units. All
requests and replies are handled by the Message Arbitrator. The Request Queue
is used to ensure the serialization of the incoming requests.

7.5 The Scheduling Algorithm in Hindsight

The LPthread's scheduler creates a deadlock-free environment for N-dimensional loop

parallelization; however, the serialization of the four atomic operations could potentially become

the parallel program's bottleneck. As illustrated in Figure 11, it is essential that the scheduler

handles all incoming requests sequentially, since the current LPthread implementation adheres

strictly to the sequential control- flow priority scheme in Section 6.3. As shown in Chapter 4,

thread wake-up is performed by the spawn and the update_Cbit primitives while the thread

selection is done by the test_Cbit and the stop primitives. Serialization of the incoming

requests guarantees that the scheduler will choose the highest priority thread during selection.

For example, the scheduler handles an update_Cbit operation and a test_Cbit operation

Message
Arbitrator

Scheduler

Processing

Unit

Processing

Unit

Processing

Unit

Request
Queue

28

independently in parallel. Assume that the update_Cbit operation wakes up a thread with a

higher priority than all other threads in the WAKEUP state. The scheduler might not choose the

highest priority thread when the test_Cbit operation fails, because it is unaware of the new

woken up thread produced by the parallel update_Cbit operation.

Although the scheduler could potentially be optimized by processing multiple requests in parallel

while performing dependency checks or employing a weaker priority scheme, the parallel

program's forward progress becomes harder to guarantee. Because the scheduling algorithm

could be on the program's critical path, further study is required to truly understand the latency of

each primitive as well as the latency from the scheduling overhead in actual ha rdware/software

implementation.

7.6 Memory Speculation

The LPthread model assumes that no memory conflict or memory aliasing exits between threads.

It assumes an oracle memory disambiguation, where a load from one thread to the same store

address of another thread would not produce a racing condition. Either the compiler must

guarantee that no memory aliasing exists or a hardware mechanism is present to handle memory

speculation.

7.7 Speculative Thread Spawn

As with branch prediction in serial loops, an LPthread can also be speculatively spawned to

maximize performance. However, the LPthread must be squashed when the speculation is

incorrect. To guarantee correctness, not only must the scheduler squash the first miss-speculated

LPthread, but it must also flush all of its successors on the Spawn Tree.

29

8 CONCLUSION

The LPthread model was constructed as a necessary medium for exposing thread- level

parallelism in N-dimensional do-across loops while adhering to realistic memory resource

constraints. It was designed by gaining insight from the properties of control dependence, data

dependence, and nested loops. As with all engineering work, the LPthread model went through

several revisions in the effort to make it more robust and efficient. While the current LPthread

model is deadlock-free and work-efficient, further study is required to truly understand the

latency of each primitive as well as the latency from the scheduling overhead in actual

hardware/software implementation. Further optimization is always possible as more insight is

gained about the LPthread model. As previously stated, the LPthread model requires extensive

compiler analysis to fully exploit loop parallelization and achieve speedup; therefore, a logical

next step in research would be to perfect the finding of loop parallelism and code transformation.

30

REFERENCES

[1] J. E. Smith and G. Sohi, "The microarchitecture of superscalar processors," in Proceedings
of the IEEE, vol. 83, pp. 1609-1624, December 1995.

[2] S. Palacharla, N. Jouppi, and J. E. Smith, "Complexity-effective superscalar processors," in

Intl. Symp. On Comp. Arch. 24, June 1997.

[3] M. Brown, J. Stark, and Y. Patt, "Select- free scheduling instruction scheduling logic," in

MICRO 34, December 2001.

[4] R. P. Colwell et al., "A VLIW architecture for a trace scheduling compiler," in ASPLOS 2,

April 1987.

[5] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. "Code generation schema for modulo

scheduled loops," in MICRO 25, December 1992.

[6] W. W. Hwu et al., "The superblock: An effective technique for VLIW and superscalar

compilation," The Journal of Supercomputing, vol. 7, pp. 229-248, 1993.

[7] D. Tullsen, S. Eggers, and H. Levy, "Simultaneous multithreading: Maximizing on-chip

parallelism," in 22nd Int'l Symp. on Computer Architecture, June 1995.

[8] M. Taylor et al., "The raw microprocessor: A computational fabric for software circuits and

general-purpose programs," IEEE Micro, vol. 22, pp. 25-35, March-April 2002.

[9] M. S. Lam and R. P. Wilson, "Limits of control flow on parallelism," in 19th Intl. Symp. on

Comp. Arch., May 1992.

[10] E. Rotenberg, Q. Jacobson, and J. Smith, "A study of control independence in superscalar

processors," in 5th Int. Symp. on High-Performance Comp. Arch., 1999.

[11] R. D. Blumofe, "Cilk: An efficient multithreaded runtime system," in Proc. of the 5th ACM

Symp. on Principles and Practice of Parallel Programming (PPoP), July 1995.

[12] G. Blelloch, P. Gibbons, and Y. Matias, "Provably efficient scheduling for languages with

fine-grained parallelism," in Proceedings of the 7th Annual ACM Symp. On Parallel
Algorithms and Architectures, July 1995, pp. 1–12.

[13] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek, "Fine-grain

parallelism with minimal hardware support: A compiler-controlled threaded abstract
machine," in Proceedings of the 4th Intl. Conference on Arch. Support for Programming
Languages and Operating Systems, 1991, pp. 164-175.

[14] G. S. Sohi, S. Breach, and T. N. Vijaykumar, "Multiscalar processors," in 22nd Intl. Symp.

on Comp. Arch., June 1995.

31

[15] J.-Y. Tsai and P.-C. Yew, "The superthreaded architecture: Thread pipelining with run-time
data dependence checking and control speculation, " in PACT, 1996.

