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ABSTRACT 
 

Superscalar processors today have aggressive and highly parallel back ends, which place 

an increasing demand on the front end. The instruction fetch mechanisms have to provide a high 

bandwidth of instructions and often end up as the bottleneck. The challenge is to mitigate the 

problems arising due to the vase difference in processor and memory speeds. 

This thesis proposes a solution to the problem. It presents a prefetching architecture that 

decouples the instruction fetch stage from the rest of the processor pipeline by an instruction 

queue (iQ). This allows the fetch stage to continue making future fetch requests while waiting for 

a miss to be serviced. The early fetch requests, or prefetching, warms up the cache with 

instructions. Thus, this system does useful work during the cache miss latency period. This thesis 

demonstrates that the mechanism reduces the number of stall cycles in the fetch stage, and 

enables the caches to be made smaller without a decrease in performance. 
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CHAPTER 1 
 

INTRODUCTION 
 

Modern superscalar processors have a large instruction window and issue multiple 

instructions simultaneously. This level of parallelism places pressure on the front-end stages of 

the pipeline. To fully exploit the advantages of the parallel back end, instructions have to be 

supplied at a high bandwidth. It is a challenge because of the vast difference between processor 

and memory speeds, instruction cache (I-cache) misses, and the nonsequential execution 

behavior of programs. 

One solution to alleviate this problem is prefetching [1] - [3]. During prefetching, a cache 

miss is anticipated in advance, and a fetch is initiated well before the address is actually 

referenced. Prefetching, as described in [1], is a technique in which instruction fetch requests are 

generated before they are actually needed. Thus, instructions are brought into the cache in 

advance, rather than on demand. This method hides or lessens the visibility of cache miss 

latency. By placing a fetch request in advance, a cache miss that would have occurred in the 

future, occurs now. So when the instruction is really needed, the line has already been brought 

into the cache, causing a real hit; or the line is in transit from a lower-level cache, resulting in a 

visible latency that is less than the maximum cache miss latency. 

The proposed design aims to implement an instruction prefetching scheme that fits snugly 

into the existing processor design, without modifying the existing branch predictors and other 

stages of the pipeline. An instruction queue (iQ) is inserted between the instruction fetch (ifetch) 
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and decode stages. This serves as a buffer for future instructions before they are consumed by the 

decoder and later stages. It also allows the branch predictor to continue making predictions even 

on an I-cache miss. No changes need to be made to any of the other stages of the processor 

pipeline. 

The intuition behind this design is that it would be useful in reducing the size of the L1 

cache. Normally, large caches are used to minimize the miss rate. Since a large cache can hold 

many lines at once, capacity and conflict misses are minimized. However, a large cache has a 

higher access time and consumes more power. There are advantages to having a smaller cache. 

The access time is shorter. If the size of the cache is smaller than or equal to the page size, then 

address translation can occur in parallel with cache access. Smaller caches also save silicon and 

consume less power. 

The proposed prefetching mechanism facilitates the use of smaller caches for achieving 

the same instructions per cycle (IPC). When the prefetching mechanism is in place, it serves to 

warm up the cache before the instruction addresses are actually referenced. Thus, future capacity 

and conflict misses occur in advance, and lines that might be referenced in the future are brought 

into the cache. Because of this mechanism, it is possible to tolerate higher miss rates, essentially 

meaning that the cache can be smaller in size for the same level of performance. 

Chapter 2 briefly describes previous research and implementations related to prefetching 

and other solutions. Chapter 3 describes the proposed design in further detail. The experimental 

setup used for the purpose of simulations is outlined in Chapter 4. The performance of this 

scheme is presented in Chapter 5. The main performance metric is the IPC. Chapter 6 concludes 

the work. 
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CHAPTER 2 
 

RELATED WORK 
 

Modern superscalar processors with aggressive execution cores require a high rate of 

instruction delivery from the front end. Much research has been done to address this issue. This 

chapter gives an insight into relevant research specific to prefetching as well as a brief overview 

of some other solutions that have been proposed. 

 
2.1 Prefetching 
 

A lot of work has been put into the design of prefetching mechanisms for both data and 

instructions. Decisions have to be made regarding what to prefetch and when to initiate it, how 

many bytes or lines to prefetch, where they should be stored and how the cache would support 

this system. Prefetching, as described in [3] followed the one block lookahead algorithm. In this 

algorithm, only the line immediately sequential to the current referenced line can be prefetched. 

It was believed that this is necessary to facilitate fast hardware implementation. This scheme 

does not take into account the non-sequential execution behavior of many programs. 

Guided prefetching for data was introduced in [1]. The architecture uses a look-ahead 

program counter (LA-PC) which is incremented and maintained in the same fashion as the 

regular PC. It is guided by a dynamic branch prediction mechanism and runs ahead of the normal 

instruction fetch engine. The LA-PC is used along with a reference prediction table to generate 

data prefetching requests. Keeping LA-PC well ahead of the normal PC allows data to be 
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brought in advance, thus hiding memory latency in case of a miss. This scheme was applied for 

prefetching data only. 

An instruction prefetching technique discussed in [2] has a fetch target queue (FTQ), 

which stores address predictions made by the predictor. These are consumed by other optimizers. 

A selection mechanism called cache probe filtering selects candidate addresses to be prefetched 

and stores them in a prefetch instruction queue (PIQ). These addresses are then used to prefetch 

from L2, and the instructions are placed in a prefetch buffer. The instruction fetching mechanism 

has to decide whether to obtain the next instruction sequence from the I-cache or the prefetch 

buffer. This design implements many structures other than the prefetch queue: a selection 

mechanism, a PIQ, a prefetch buffer, and a fetch target queue. The mechanism would not be able 

to fit into the current processor without significant changes. It is also more complex to 

implement compared to the design proposed in this thesis. 

 
2.2 Other Research 
 

Several other solutions have been proposed to increase the fetch bandwidth. Some 

solutions aim at increasing the number of instructions fetched per cycle by using additions like 

the collapsing buffer [4], or by using multiple narrow fetch units in parallel to achieve a large 

combined fetch bandwidth [5], and then combining it with parallel renaming to further increase 

the number of available instructions [6]. 

Yet another set of solutions aim at reducing the impact of cache misses by doing useful 

work during the latency period. In [7], the impact of an I-cache miss is reduced by writing 

instructions into reservation stations out of order. On a miss, the branch predictor continues to 

make predictions, the processor fetches the instructions and writes them in the reservation 

stations. 
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CHAPTER 3 
 

DESIGN DETAILS 
 
3.1 Basic Concept 
 

It is useful to know how the prefetching scheme is beneficial. Figures 1 and 2 show a 

timeline of operation for both the original and prefetching processors. Ii are the addresses of the 

instructions. Assume that I1, I2, and I3 are sequential instructions, but I3 lies on a different line. 

Further, I3 is a branch instruction pointing to I4 which lies in an altogether different line. I5 

sequentially follows I4. 

 

 
Figure 1 Timeline for the original processor 

 

 
Figure 2 Timeline for the prefetching processor 
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 In the original processor, after fetching I1 and I2, there is a miss on I3 since it is on a 

different line. The ifetch stage has to stall for 10 cycles while the miss is serviced. Normal 

operation continues on cycle 13, and on cycle 14 there is a miss for I4. The processor again stalls 

for 10 cycles while the miss is serviced. I5 is available only in cycle 25. 

 In the prefetching processor the ifetch does not stall on the I3 miss, but continues to 

generate next PCs and placing requests to the I-cache. This is effectively like pipelining fetch 

requests such that there are multiple requests active in parallel. Thus, I5 is fetched earlier and is 

available in cycle 15 itself. As we can see, prefetching populates the I-cache with useful 

instructions in advance, and reduces the number of stalls in the fetch stage. 

 
3.2 Processor Structure 
 
 The processor in which this design is incorporated is modeled on the MIPS R10000 

processor. The framework of the processor pipeline is shown in Figure 3. The first stage of the 

pipeline is the address generation and instruction fetching unit. It is elaborated in Figure 4. The 

address generation is done by a branch predictor with the help of a branch target buffer (BTB). 

The branch predictor is capable of making one prediction per cycle. The ifetch unit checks for a 

hit in the L1 I-cache. If there is a hit, the instruction is returned in one cycle, is latched and sent 

to the decoder. On a miss, the L2 unified cache is accessed, and the ifetch stage stalls till the line 

is brought into the L1 I-cache. While the ifetch stage is stalled, the branch predictor does not 

make any new predictions and a NOP is latched and sent to the decoder. What this means is that 

instructions are always sent to the decoder in the correct predicted order. After the missed line 

arrives, the instruction is sent to the decoder, and the branch predictor resumes operation. A 

return address stack (RAS) is also maintained in this stage. 
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Figure 3 The processor pipeline 

 

 
Figure 4 Detailed instruction fetch unit  

 
3.3 Modifications to the Structure 
 

To be able to warm up the cache with instructions in advance, as opposed to on demand, 

future instruction addresses have to be generated. The branch predictor is used to generate the 

future addresses, which will be used for prefetching. There are many algorithms describing what 

and when to prefetch. In this design, the decision on what to prefetch is made by the branch 

predictor. The reason for this is that it more closely resembles the actual execution sequence that 

the program undertakes. As for when to initiate prefetch, it is done every time there is a miss in 

the L1 I-cache. That is when useful work is done during the cache miss latency. 
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 Even with prefetching in place, it is essential to send instructions to the decoder in the 

original order, so that no changes are required in any of the other stages of the pipeline. Thus, the 

instruction queue has a FIFO structure. 

Two modifications are made to the ifetch stage. In the original implementation, the ifetch 

stage stalls completely on an I-cache miss. It waits for the line to be brought in from the L2 

cache or memory system. A NOP is sent to the decoder, and the branch predictor makes no 

predictions. Normal operation resumes after the line is brought in. In the proposed design, this 

stalling condition is lifted so that branch prediction continues normally, even on a miss. The 

second modification is the introduction of an iQ between the ifetch and decode stages. Figure 5 

shows this organization. 

 
 

Figure 5 Modified ifetch unit: Introduction of the instruction queue 
 
3.4 The Branch Predictor 
 

The branch predictor is a part of the instruction fetch stage of the processor pipeline. It is 

capable of making one prediction per cycle. Each prediction is essentially the next PC that has to 
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be fetched. This new PC could be sequentially after the previous PC or could be in another line if 

the previous PC was a control instruction.  

The branch predictor design is not changed. However, since the condition in which the 

fetch stage stalls on a miss is lifted, the branch predictor continues to make one prediction per 

cycle even on an I-cache miss. The predicted addresses are sent to the fetching mechanism 

immediately, and an entry is also made in the iQ. 

 
3.5 The Instruction Queue and L1 I-cache 
 

The iQ is a first in first out (FIFO) structure placed between the ifetch and decode stages 

as shown in Figure 3. The iQ acts like a buffer and decouples the instruction fetching mechanism 

from the rest of the processor pipeline, thus permitting instructions to be fetched even on a miss. 

The queue stores both the predicted PCs and the corresponding fetched or prefetched 

instructions. On each cycle, the branch predictor predicts the next PC which is used to access the 

I-cache. An entry for the predicted PC is made in the next iQ slot. If there was a hit in the I-

cache, the fetched instruction is placed in the iQ corresponding to its PC. 

If there was a miss in the I-cache, an entry is made in the iQ, but contains only the PC 

and not its corresponding instruction. While the L2 cache and memory system service the miss, 

the branch predictor continues making predictions into the future. These future PCs are inserted 

into the iQ, and prefetch requests are sent to the fetching mechanism. Some of these prefetch 

requests could result in a hit, and the prefetched instructions are placed in the iQ corresponding 

to their PCs. When the missed line becomes available, the L2 system sends the requested 

instruction to the iQ and an entry is made corresponding to its PC. The line is also placed in the 

L1 I-cache. This means the L1 I-cache is being populated by lines which might contain 

instructions referenced in the future. 
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On each cycle, the entry at the head of the iQ is checked for availability. If the entry has a 

complete PC-instruction pair, then it is consumed by the decode stage. If it is incomplete and the 

instruction has not yet arrived (waiting for a miss to be serviced), a NOP is sent to the decoder. 

This functionality is the same as in the original simulator i.e. instructions are sent to the decoder 

in the same order as before.  

One essential requirement for this scheme is that the I-cache should be nonblocking. This 

means that even on a miss, it should continue servicing subsequent read requests. Each read 

request might miss in the cache, and each of these misses should be sent to the L2 system. The I-

cache also needs to have one read port and one write port. 

The iQ acts like a buffer and gives a glimpse of a stream of future instructions and 

addresses which includes branches. As mentioned in [2], this can be used to guide various PC-

based predictors like data-cache prefetchers, value predictors and instruction reuse tables. 

 
3.6 Recovery Mechanism 
 

If there is any type of misprediction or misspeculation, it means that the instructions and 

addresses currently in the iQ are not on the right path. The PC is restored, the iQ is flushed, the 

history and RAS are restored, and the branch predictor starts making fresh predictions along the 

correct path. These new predictions make entries in the iQ in the normal fashion. 
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CHAPTER 4 
 

SIMULATION SETUP 
 

The simulator used is based on the MIPS R10000 processor. Parameters for the base case 

processor are outlined in Table 1. 

Table 1 Baseline Simulation Parameters 
 

L1 Cache 
(Instruction cache) 

8KB, 2-way set associative, 32 
lines, 128-byte line, hit-time 1 
cycle, miss latency 10 cycles 

L2 Cache 
(Unified cache) 

128KB, 8-way set associative, 
512 lines, 128-byte line, miss 
latency 100 cycles 

Execution Width Superscalar factor of 4 
Scoreboard 128 entry FIFO 
Branch Target Buffer 4096 entries, 4-way set 

associative, 4 bytes per line 
Branch Predictor Gshare predictor, 8192 entries, 

8 bits of global history 
 

A sample set of benchmarks from the SPEC INT 2000 suite are compiled for MIPS and 

used for simulation. Each instruction is 4 bytes long. The benchmarks are simulated till a 

maximum of 300 million instructions. Three different cases are studied. 

First, for emphasizing the usefulness of the instruction queue, the L1 instruction cache 

parameters are modified. Both the number of lines and size of each line are progressively 

reduced to see the effect of smaller caches on performance. Another indirect way of looking at 

the effects is to see how often the ifetch stage stalls for the original and prefetching architecture. 

Identical configurations are used for both the prefetching scheme and the original processor and 

their results are compared. 
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 Second, the size of the instruction queue is varied to study its impact on performance. 

The sizes considered are 512, 256, 128, 64, 32, and 16. One base simulation is also run where the 

iQ is unbounded in size. This is useful while comparing the effect of bounded and unbounded 

FIFO sizes.  

Third, the L2 unified cache is made almost negligible at 32 bytes and can hold only 8 

instructions. The size of the I-cache is kept constant at 8 kB as in the baseline processor. The 

purpose of reducing the L2 to such a small size is to see whether and how prefetching can 

maintain good performance with just the L1 I-cache. 
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CHAPTER 5 
 

RESULTS AND ANALYSIS 
 

This chapter provides a comparative analysis of the performance achieved by the iQ-

based prefetching mechanism under different architecture configurations. The effect of decreased 

cache size is discussed first. The impact of a restricted iQ size is examined next. Finally, the 

performance of the prefetching scheme under the extreme case of a negligible L2 cache is 

evaluated. All comparisons are made with the original architecture � with same configurations 

and without the iQ. The metric used to measure performance is instructions per cycle (IPC). 

 
5.1 Reduced L1 I-cache Size 
 

As discussed earlier, the instruction queue based prefetching mechanism allows the L1 I-

cache to be made smaller with only a small drop in performance. The main reason for this is that 

prefetching warms up the cache with to-be-addressed instructions, thereby preventing an I-cache 

miss or lessening its effect. Figure 6 shows the effects of decreasing cache size for both the 

original processor and the prefetching processor for six different benchmarks. The x-axis shows 

the progressively decreasing L1 I-cache size. Both the number of lines and the size of the line are 

reduced. It is a two-way set associative cache. When the cache size is the same as the original 

configuration of 8 kB, the IPCs for both the original and prefetching processors are almost 

similar. 
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Figure 6 Effect of prefetching on performance at reduced cache sizes 
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Two observations are made from these figures. The first is that with a decrease in L1 I-

cache size the IPC for the original processor drop much quicker than the prefetching processor. 

For example, for the gzip benchmark, when the cache is reduced from 8 kB to 512 B, i.e., 1/16th 

of its original size, the IPC drops by 10% in the prefetching processor. In the original processor, 

it drops by 22%. If the size of the cache is further reduced to 256 B, the drop is only 14% for 

prefetching, and a drastic 67% for the original one. 

The second observation is that for the same performance level, the prefetching processor 

can use a smaller cache. For example, for gcc, a 2 kB cache in the prefetching processor achieves 

the same IPC as the 8 kB cache in the original processor. As the cache size reduces, the 

performance of the original processor falls much quicker than the prefetching processor. This 

observation is in agreement with the original performance intuition that prefetching allows usage 

of smaller cache sizes without a significant decrease in performance. This effect is more apparent 

in Figure 7 where the performance of the original and prefetching processors is shown for the 

original cache size of 8 kB and for a reduced cache size of 512 B. It is clearly seen that the 

original processor’s performance drops drastically for almost all benchmarks. 
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Figure 7 Performance at 8 kB and 512 B I-cache 
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The ifetch stage stalls every time the next instruction to be sent to the decoder is not 

available, and sends a NOP. This is true for both the original and prefetching processors. 

However, prefetching has the effect of reducing the number of times the ifetch stage stalls. With 

prefetching, future lines have been brought into the cache in advance, and so the referenced line 

either hits in the cache, or sees a smaller latency (when the line is in transit from L2). Thus, the 

instruction fetching mechanism has to wait for a smaller number of cycles for the line to arrive. 

As a result, the ifetch stage stalls less frequently. A representation of this is shown in Figure 8. It 

gives a comparison between the number of stall cycles for the original processor and the 

prefetching processor, as the cache size is decreased. As is expected, the number of stalls would 

increase as the cache is made smaller, because of the higher rate of misses. But it can easily be 

observed that the number of stalls rises much more rapidly in the original processor since there is 

no prefetching. 

 
5.2 Restricted Instruction Queue Size 
 

The prefetching processor was simulated with an unbounded FIFO, as well as with 

various fixed sizes. Figure 9 shows the how the performance is affected by the different FIFO 

sizes. As can be seen, smaller iQ sizes have almost no impact on performance. The IPC remains 

constant for all FIFO sizes and takes a slight dip at size 16. This shows that restricting the FIFO 

size will not adversely affect advantages obtained by prefetching. Thus, a feasible size of the 

FIFO is possible, which doesn’t take up too much area and is simpler to implement. 
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Figure 8 Effect of prefetching on ifetch stall frequency 
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Figure 9 Impact of varying iQ size 
 
 
5.3 Negligible L2 Cache 
 
 To demonstrate the effectiveness of the prefetching mechanism, the L2 cache is reduced 

to a negligible size of 32 B, holding only 8 instructions. Normally, the L2 is so large (128 kB in 

the baseline configuration) that almost no line misses in it and L1 miss latency is 10 cycles. By 

completely removing the L2, every miss in L1 would suffer a latency of 100 cycles since the 

request has to go to the memory system. The L1 has its baseline configuration of 8 kB.  

 Since this is an extreme case where there is hardly any L2 cache to support misses in L1, 

there is bound to be performance degradation. However, the prefetching processor outperforms 

the original processor and the loss in performance is not as much. Figure 10 shows the 

performance of the original and prefetching processors at both the baseline configuration and 

also at the small L2 configuration, for six benchmarks. Figure 11 shows how the prefetching 

mechanism works better than the original by expressing the percentage of improvement. 
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Figure 10 Performance at baseline configuration and at a negligible L2 cache 
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Figure 11 Performance improvement at a negligible L2 cache 

 
It must be kept in mind that the L2 is a unified cache containing both instructions and 

data. Making the L2 negligible in size affects both the instruction fetching mechanism as well as 

the data fetching mechanism, and thus the efficiency of the back end. The reason there exists any 
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degradation at all, is because of the increased latency for both instruction and data misses in the 

L1 caches. 

We can see in Figure 11 that there is no improvement in the case of gzip and parser. The 

reason for this is that both these benchmarks use a small working set of instructions. Since the L1 

I-cache cache is reasonably sized at 8 kB, it can hold most of these instructions, thereby reducing 

the number of misses. Prefetching shows its usefulness in the case of gcc and vortex benchmarks 

which have a large instruction working set. These benchmarks miss in the L1 I-cache more often, 

and prefetching is beneficial in reducing the effect of the large 100 cycle miss latency. Therefore,  

the performance improvement is much larger. 
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CHAPTER 6 
 

CONCLUSION 
 

Highly parallel back-ends of modern processors place huge demands on the instruction 

fetching mechanisms. This is because of the differences in speed between the processor and 

memory, the existence of branches and to a certain degree, because of misses in the caches. 

This thesis proposed a decoupled instruction prefetching mechanism as a solution to 

mitigate the problems faced by the front-ends of processors. The decoupling of the ifetch stage 

from the rest of the pipeline with the help of an instruction queue allows fetching to continue 

beyond misses. This helps to populate the L1 I-cache with useful instructions, thereby reducing 

the number of misses and stall cycles in the ifetch. The results show that the number of stalls is 

significantly less in the prefetching processor as compared to the original processor. 

Furthermore, since the direction of prefetching is determined by the branch predictor, the I-cache 

contains instructions which are more likely to be on the execution path of the program. 

Since the caches are populated with useful instructions, this mechanism allows the caches 

to be made smaller in size for the same level of performance. This is a huge advantage since 

smaller caches means smaller access times and less area. It proves that the prefetching 

mechanism is resilient to I-cache misses. The results also show that this is achievable with a 

fairly small size of the instruction queue, which makes it practical for implementation.  
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