
A DECOUPLED INSTRUCTION PREFETCH MECHANISM
FOR HIGH THROUGHPUT

BY

SNEHAL RAJENDRAKUMAR SANGHAVI

B.E., University of Mumbai, 2003

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

 iii

ABSTRACT

Superscalar processors today have aggressive and highly parallel back ends, which place

an increasing demand on the front end. The instruction fetch mechanisms have to provide a high

bandwidth of instructions and often end up as the bottleneck. The challenge is to mitigate the

problems arising due to the vase difference in processor and memory speeds.

This thesis proposes a solution to the problem. It presents a prefetching architecture that

decouples the instruction fetch stage from the rest of the processor pipeline by an instruction

queue (iQ). This allows the fetch stage to continue making future fetch requests while waiting for

a miss to be serviced. The early fetch requests, or prefetching, warms up the cache with

instructions. Thus, this system does useful work during the cache miss latency period. This thesis

demonstrates that the mechanism reduces the number of stall cycles in the fetch stage, and

enables the caches to be made smaller without a decrease in performance.

 iv

I dedicate this thesis to my parents Mainakee and Rajendra Sanghavi and my brother

Sujay for their love, care, selflessness, and companionship.

 v

ACKNOWLEDGMENTS

 I would like to express my gratitude to my adviser, Professor Matthew Frank, for his

advice, guidance, and patience, and for clearing up many concepts. I would also like to thank my

colleague Kevin Woley for answering my numerous questions and helping me with simulation-

related issues.

 I also take this opportunity to thank my friend Amit for his support and interest.

 vi

TABLE OF CONTENTS

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

CHAPTER 1: INTRODUCTION..1

CHAPTER 2: RELATED WORK...3

2.1 Prefetching ...3
2.2 Other Research...4

CHAPTER 3: DESIGN DETAILS..5

3.1 Basic Concept ..5
3.2 Processor Structure ..6
3.3 Modifications to the Structure ...7
3.4 The Branch Predictor ...8
3.5 The Instruction Queue and L1 I-cache...9
3.6 Recovery Mechanism...10

CHAPTER 4: SIMULATION SETUP ..11

CHAPTER 5: RESULTS AND ANALYSIS ..13

5.1 Reduced L1 I-cache size ..13
5.2 Restricted Instruction Queue Size..17
5.3 Negligible L2 Cache ..18

CHAPTER 6: CONCLUSION ..21

REFERENCES ..22

 vii

LIST OF TABLES

Table Page

1 Baseline Simulation Parameters ..11

 viii

LIST OF FIGURES

Figure Page

1 Timeline for the original processor..5

2 Timeline for the prefetching processor ..5

3 The processor pipeline ...7

4 Detailed instruction fetch unit..7

5 Modified ifetch unit: Introduction of the Instruction Queue8

6 Effect of prefetching on performance at reduced cache sizes............................14

7 Performance at 8KB and 512B I-cache ...15

8 Effect of prefetching on ifetch stall frequency ..17

9 Impact of varying iQ size...18

10 Performance at baseline configuration and at a negligible L2 cache.................19

11 Performance improvement at a negligible L2 cache..19

 1

CHAPTER 1

INTRODUCTION

Modern superscalar processors have a large instruction window and issue multiple

instructions simultaneously. This level of parallelism places pressure on the front-end stages of

the pipeline. To fully exploit the advantages of the parallel back end, instructions have to be

supplied at a high bandwidth. It is a challenge because of the vast difference between processor

and memory speeds, instruction cache (I-cache) misses, and the nonsequential execution

behavior of programs.

One solution to alleviate this problem is prefetching [1] - [3]. During prefetching, a cache

miss is anticipated in advance, and a fetch is initiated well before the address is actually

referenced. Prefetching, as described in [1], is a technique in which instruction fetch requests are

generated before they are actually needed. Thus, instructions are brought into the cache in

advance, rather than on demand. This method hides or lessens the visibility of cache miss

latency. By placing a fetch request in advance, a cache miss that would have occurred in the

future, occurs now. So when the instruction is really needed, the line has already been brought

into the cache, causing a real hit; or the line is in transit from a lower-level cache, resulting in a

visible latency that is less than the maximum cache miss latency.

The proposed design aims to implement an instruction prefetching scheme that fits snugly

into the existing processor design, without modifying the existing branch predictors and other

stages of the pipeline. An instruction queue (iQ) is inserted between the instruction fetch (ifetch)

 2

and decode stages. This serves as a buffer for future instructions before they are consumed by the

decoder and later stages. It also allows the branch predictor to continue making predictions even

on an I-cache miss. No changes need to be made to any of the other stages of the processor

pipeline.

The intuition behind this design is that it would be useful in reducing the size of the L1

cache. Normally, large caches are used to minimize the miss rate. Since a large cache can hold

many lines at once, capacity and conflict misses are minimized. However, a large cache has a

higher access time and consumes more power. There are advantages to having a smaller cache.

The access time is shorter. If the size of the cache is smaller than or equal to the page size, then

address translation can occur in parallel with cache access. Smaller caches also save silicon and

consume less power.

The proposed prefetching mechanism facilitates the use of smaller caches for achieving

the same instructions per cycle (IPC). When the prefetching mechanism is in place, it serves to

warm up the cache before the instruction addresses are actually referenced. Thus, future capacity

and conflict misses occur in advance, and lines that might be referenced in the future are brought

into the cache. Because of this mechanism, it is possible to tolerate higher miss rates, essentially

meaning that the cache can be smaller in size for the same level of performance.

Chapter 2 briefly describes previous research and implementations related to prefetching

and other solutions. Chapter 3 describes the proposed design in further detail. The experimental

setup used for the purpose of simulations is outlined in Chapter 4. The performance of this

scheme is presented in Chapter 5. The main performance metric is the IPC. Chapter 6 concludes

the work.

 3

CHAPTER 2

RELATED WORK

Modern superscalar processors with aggressive execution cores require a high rate of

instruction delivery from the front end. Much research has been done to address this issue. This

chapter gives an insight into relevant research specific to prefetching as well as a brief overview

of some other solutions that have been proposed.

2.1 Prefetching

A lot of work has been put into the design of prefetching mechanisms for both data and

instructions. Decisions have to be made regarding what to prefetch and when to initiate it, how

many bytes or lines to prefetch, where they should be stored and how the cache would support

this system. Prefetching, as described in [3] followed the one block lookahead algorithm. In this

algorithm, only the line immediately sequential to the current referenced line can be prefetched.

It was believed that this is necessary to facilitate fast hardware implementation. This scheme

does not take into account the non-sequential execution behavior of many programs.

Guided prefetching for data was introduced in [1]. The architecture uses a look-ahead

program counter (LA-PC) which is incremented and maintained in the same fashion as the

regular PC. It is guided by a dynamic branch prediction mechanism and runs ahead of the normal

instruction fetch engine. The LA-PC is used along with a reference prediction table to generate

data prefetching requests. Keeping LA-PC well ahead of the normal PC allows data to be

 4

brought in advance, thus hiding memory latency in case of a miss. This scheme was applied for

prefetching data only.

An instruction prefetching technique discussed in [2] has a fetch target queue (FTQ),

which stores address predictions made by the predictor. These are consumed by other optimizers.

A selection mechanism called cache probe filtering selects candidate addresses to be prefetched

and stores them in a prefetch instruction queue (PIQ). These addresses are then used to prefetch

from L2, and the instructions are placed in a prefetch buffer. The instruction fetching mechanism

has to decide whether to obtain the next instruction sequence from the I-cache or the prefetch

buffer. This design implements many structures other than the prefetch queue: a selection

mechanism, a PIQ, a prefetch buffer, and a fetch target queue. The mechanism would not be able

to fit into the current processor without significant changes. It is also more complex to

implement compared to the design proposed in this thesis.

2.2 Other Research

Several other solutions have been proposed to increase the fetch bandwidth. Some

solutions aim at increasing the number of instructions fetched per cycle by using additions like

the collapsing buffer [4], or by using multiple narrow fetch units in parallel to achieve a large

combined fetch bandwidth [5], and then combining it with parallel renaming to further increase

the number of available instructions [6].

Yet another set of solutions aim at reducing the impact of cache misses by doing useful

work during the latency period. In [7], the impact of an I-cache miss is reduced by writing

instructions into reservation stations out of order. On a miss, the branch predictor continues to

make predictions, the processor fetches the instructions and writes them in the reservation

stations.

 5

CHAPTER 3

DESIGN DETAILS

3.1 Basic Concept

It is useful to know how the prefetching scheme is beneficial. Figures 1 and 2 show a

timeline of operation for both the original and prefetching processors. Ii are the addresses of the

instructions. Assume that I1, I2, and I3 are sequential instructions, but I3 lies on a different line.

Further, I3 is a branch instruction pointing to I4 which lies in an altogether different line. I5

sequentially follows I4.

Figure 1 Timeline for the original processor

Figure 2 Timeline for the prefetching processor

 6

 In the original processor, after fetching I1 and I2, there is a miss on I3 since it is on a

different line. The ifetch stage has to stall for 10 cycles while the miss is serviced. Normal

operation continues on cycle 13, and on cycle 14 there is a miss for I4. The processor again stalls

for 10 cycles while the miss is serviced. I5 is available only in cycle 25.

 In the prefetching processor the ifetch does not stall on the I3 miss, but continues to

generate next PCs and placing requests to the I-cache. This is effectively like pipelining fetch

requests such that there are multiple requests active in parallel. Thus, I5 is fetched earlier and is

available in cycle 15 itself. As we can see, prefetching populates the I-cache with useful

instructions in advance, and reduces the number of stalls in the fetch stage.

3.2 Processor Structure

 The processor in which this design is incorporated is modeled on the MIPS R10000

processor. The framework of the processor pipeline is shown in Figure 3. The first stage of the

pipeline is the address generation and instruction fetching unit. It is elaborated in Figure 4. The

address generation is done by a branch predictor with the help of a branch target buffer (BTB).

The branch predictor is capable of making one prediction per cycle. The ifetch unit checks for a

hit in the L1 I-cache. If there is a hit, the instruction is returned in one cycle, is latched and sent

to the decoder. On a miss, the L2 unified cache is accessed, and the ifetch stage stalls till the line

is brought into the L1 I-cache. While the ifetch stage is stalled, the branch predictor does not

make any new predictions and a NOP is latched and sent to the decoder. What this means is that

instructions are always sent to the decoder in the correct predicted order. After the missed line

arrives, the instruction is sent to the decoder, and the branch predictor resumes operation. A

return address stack (RAS) is also maintained in this stage.

 7

Figure 3 The processor pipeline

Figure 4 Detailed instruction fetch unit

3.3 Modifications to the Structure

To be able to warm up the cache with instructions in advance, as opposed to on demand,

future instruction addresses have to be generated. The branch predictor is used to generate the

future addresses, which will be used for prefetching. There are many algorithms describing what

and when to prefetch. In this design, the decision on what to prefetch is made by the branch

predictor. The reason for this is that it more closely resembles the actual execution sequence that

the program undertakes. As for when to initiate prefetch, it is done every time there is a miss in

the L1 I-cache. That is when useful work is done during the cache miss latency.

 8

 Even with prefetching in place, it is essential to send instructions to the decoder in the

original order, so that no changes are required in any of the other stages of the pipeline. Thus, the

instruction queue has a FIFO structure.

Two modifications are made to the ifetch stage. In the original implementation, the ifetch

stage stalls completely on an I-cache miss. It waits for the line to be brought in from the L2

cache or memory system. A NOP is sent to the decoder, and the branch predictor makes no

predictions. Normal operation resumes after the line is brought in. In the proposed design, this

stalling condition is lifted so that branch prediction continues normally, even on a miss. The

second modification is the introduction of an iQ between the ifetch and decode stages. Figure 5

shows this organization.

Figure 5 Modified ifetch unit: Introduction of the instruction queue

3.4 The Branch Predictor

The branch predictor is a part of the instruction fetch stage of the processor pipeline. It is

capable of making one prediction per cycle. Each prediction is essentially the next PC that has to

 9

be fetched. This new PC could be sequentially after the previous PC or could be in another line if

the previous PC was a control instruction.

The branch predictor design is not changed. However, since the condition in which the

fetch stage stalls on a miss is lifted, the branch predictor continues to make one prediction per

cycle even on an I-cache miss. The predicted addresses are sent to the fetching mechanism

immediately, and an entry is also made in the iQ.

3.5 The Instruction Queue and L1 I-cache

The iQ is a first in first out (FIFO) structure placed between the ifetch and decode stages

as shown in Figure 3. The iQ acts like a buffer and decouples the instruction fetching mechanism

from the rest of the processor pipeline, thus permitting instructions to be fetched even on a miss.

The queue stores both the predicted PCs and the corresponding fetched or prefetched

instructions. On each cycle, the branch predictor predicts the next PC which is used to access the

I-cache. An entry for the predicted PC is made in the next iQ slot. If there was a hit in the I-

cache, the fetched instruction is placed in the iQ corresponding to its PC.

If there was a miss in the I-cache, an entry is made in the iQ, but contains only the PC

and not its corresponding instruction. While the L2 cache and memory system service the miss,

the branch predictor continues making predictions into the future. These future PCs are inserted

into the iQ, and prefetch requests are sent to the fetching mechanism. Some of these prefetch

requests could result in a hit, and the prefetched instructions are placed in the iQ corresponding

to their PCs. When the missed line becomes available, the L2 system sends the requested

instruction to the iQ and an entry is made corresponding to its PC. The line is also placed in the

L1 I-cache. This means the L1 I-cache is being populated by lines which might contain

instructions referenced in the future.

 10

On each cycle, the entry at the head of the iQ is checked for availability. If the entry has a

complete PC-instruction pair, then it is consumed by the decode stage. If it is incomplete and the

instruction has not yet arrived (waiting for a miss to be serviced), a NOP is sent to the decoder.

This functionality is the same as in the original simulator i.e. instructions are sent to the decoder

in the same order as before.

One essential requirement for this scheme is that the I-cache should be nonblocking. This

means that even on a miss, it should continue servicing subsequent read requests. Each read

request might miss in the cache, and each of these misses should be sent to the L2 system. The I-

cache also needs to have one read port and one write port.

The iQ acts like a buffer and gives a glimpse of a stream of future instructions and

addresses which includes branches. As mentioned in [2], this can be used to guide various PC-

based predictors like data-cache prefetchers, value predictors and instruction reuse tables.

3.6 Recovery Mechanism

If there is any type of misprediction or misspeculation, it means that the instructions and

addresses currently in the iQ are not on the right path. The PC is restored, the iQ is flushed, the

history and RAS are restored, and the branch predictor starts making fresh predictions along the

correct path. These new predictions make entries in the iQ in the normal fashion.

 11

CHAPTER 4

SIMULATION SETUP

The simulator used is based on the MIPS R10000 processor. Parameters for the base case

processor are outlined in Table 1.

Table 1 Baseline Simulation Parameters

L1 Cache
(Instruction cache)

8KB, 2-way set associative, 32
lines, 128-byte line, hit-time 1
cycle, miss latency 10 cycles

L2 Cache
(Unified cache)

128KB, 8-way set associative,
512 lines, 128-byte line, miss
latency 100 cycles

Execution Width Superscalar factor of 4
Scoreboard 128 entry FIFO
Branch Target Buffer 4096 entries, 4-way set

associative, 4 bytes per line
Branch Predictor Gshare predictor, 8192 entries,

8 bits of global history

A sample set of benchmarks from the SPEC INT 2000 suite are compiled for MIPS and

used for simulation. Each instruction is 4 bytes long. The benchmarks are simulated till a

maximum of 300 million instructions. Three different cases are studied.

First, for emphasizing the usefulness of the instruction queue, the L1 instruction cache

parameters are modified. Both the number of lines and size of each line are progressively

reduced to see the effect of smaller caches on performance. Another indirect way of looking at

the effects is to see how often the ifetch stage stalls for the original and prefetching architecture.

Identical configurations are used for both the prefetching scheme and the original processor and

their results are compared.

 12

 Second, the size of the instruction queue is varied to study its impact on performance.

The sizes considered are 512, 256, 128, 64, 32, and 16. One base simulation is also run where the

iQ is unbounded in size. This is useful while comparing the effect of bounded and unbounded

FIFO sizes.

Third, the L2 unified cache is made almost negligible at 32 bytes and can hold only 8

instructions. The size of the I-cache is kept constant at 8 kB as in the baseline processor. The

purpose of reducing the L2 to such a small size is to see whether and how prefetching can

maintain good performance with just the L1 I-cache.

 13

CHAPTER 5

RESULTS AND ANALYSIS

This chapter provides a comparative analysis of the performance achieved by the iQ-

based prefetching mechanism under different architecture configurations. The effect of decreased

cache size is discussed first. The impact of a restricted iQ size is examined next. Finally, the

performance of the prefetching scheme under the extreme case of a negligible L2 cache is

evaluated. All comparisons are made with the original architecture � with same configurations

and without the iQ. The metric used to measure performance is instructions per cycle (IPC).

5.1 Reduced L1 I-cache Size

As discussed earlier, the instruction queue based prefetching mechanism allows the L1 I-

cache to be made smaller with only a small drop in performance. The main reason for this is that

prefetching warms up the cache with to-be-addressed instructions, thereby preventing an I-cache

miss or lessening its effect. Figure 6 shows the effects of decreasing cache size for both the

original processor and the prefetching processor for six different benchmarks. The x-axis shows

the progressively decreasing L1 I-cache size. Both the number of lines and the size of the line are

reduced. It is a two-way set associative cache. When the cache size is the same as the original

configuration of 8 kB, the IPCs for both the original and prefetching processors are almost

similar.

 14

gcc

1.044

1.486

1.197
1.095

0.784

0.493

0.240

1.701
1.605

1.505
1.362

1.210
1.098

0.275

0.000

0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600
1.800

8KB 4KB 2KB 1KB 512B 256B 128B

I-cache size

IP
C

Prefetching

Original

gzip

1.8511.900
1.9912.0862.1332.1822.192

0.583
0.722

1.182

1.719

2.083
2.1702.191

0.000

0.500

1.000

1.500

2.000

2.500

8KB 4KB 2KB 1KB 512B 256B 128B

I-cache size

IP
C

Prefetching

Original

parser

0.892

1.223
1.381

1.482
1.7831.8371.910

0.324
0.500

1.036

1.483

1.870
1.9251.947

0.000

0.500

1.000

1.500

2.000

2.500

8KB 4KB 2KB 1KB 512B 256B 128B

I-cache size

IP
C

Prefetching

Original

twolf

1.544 1.500 1.466 1.387
1.270

1.056
0.917

1.540
1.271

1.206

0.912

0.591

0.274 0.236
0.000

0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600
1.800

8KB 4KB 2KB 1KB 512B 256B 128B

I-cache size

IP
C

Prefetching

Original

vortex

2.636 2.569
2.429

2.239
2.103 1.964 1.8802.029

1.499
1.192

0.793
0.461 0.254 0.200

0.000

0.500

1.000

1.500

2.000

2.500

3.000

8KB 4KB 2KB 1KB 512B 256B 128B

I-cache size

IP
C

Prefetching

Original

vpr.place

1.1321.201
1.371

1.524
1.682

1.793
1.874

0.1900.2190.371

0.689

1.178
1.422

1.825

0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000

8KB 4KB 2KB 1KB 512B 256B 128B

I-cache size

IP
C

Prefetching

Original

Figure 6 Effect of prefetching on performance at reduced cache sizes

 15

Two observations are made from these figures. The first is that with a decrease in L1 I-

cache size the IPC for the original processor drop much quicker than the prefetching processor.

For example, for the gzip benchmark, when the cache is reduced from 8 kB to 512 B, i.e., 1/16th

of its original size, the IPC drops by 10% in the prefetching processor. In the original processor,

it drops by 22%. If the size of the cache is further reduced to 256 B, the drop is only 14% for

prefetching, and a drastic 67% for the original one.

The second observation is that for the same performance level, the prefetching processor

can use a smaller cache. For example, for gcc, a 2 kB cache in the prefetching processor achieves

the same IPC as the 8 kB cache in the original processor. As the cache size reduces, the

performance of the original processor falls much quicker than the prefetching processor. This

observation is in agreement with the original performance intuition that prefetching allows usage

of smaller cache sizes without a significant decrease in performance. This effect is more apparent

in Figure 7 where the performance of the original and prefetching processors is shown for the

original cache size of 8 kB and for a reduced cache size of 512 B. It is clearly seen that the

original processor’s performance drops drastically for almost all benchmarks.

0.000

0.500

1.000

1.500

2.000

2.500

3.000

gcc gzip parser tw olf vortex vpr.place

Benchmarks

IP
C

Original at 8K

Prefetching at 8K

Original at 512B

Prefetching at 512B

Figure 7 Performance at 8 kB and 512 B I-cache

 16

The ifetch stage stalls every time the next instruction to be sent to the decoder is not

available, and sends a NOP. This is true for both the original and prefetching processors.

However, prefetching has the effect of reducing the number of times the ifetch stage stalls. With

prefetching, future lines have been brought into the cache in advance, and so the referenced line

either hits in the cache, or sees a smaller latency (when the line is in transit from L2). Thus, the

instruction fetching mechanism has to wait for a smaller number of cycles for the line to arrive.

As a result, the ifetch stage stalls less frequently. A representation of this is shown in Figure 8. It

gives a comparison between the number of stall cycles for the original processor and the

prefetching processor, as the cache size is decreased. As is expected, the number of stalls would

increase as the cache is made smaller, because of the higher rate of misses. But it can easily be

observed that the number of stalls rises much more rapidly in the original processor since there is

no prefetching.

5.2 Restricted Instruction Queue Size

The prefetching processor was simulated with an unbounded FIFO, as well as with

various fixed sizes. Figure 9 shows the how the performance is affected by the different FIFO

sizes. As can be seen, smaller iQ sizes have almost no impact on performance. The IPC remains

constant for all FIFO sizes and takes a slight dip at size 16. This shows that restricting the FIFO

size will not adversely affect advantages obtained by prefetching. Thus, a feasible size of the

FIFO is possible, which doesn’t take up too much area and is simpler to implement.

 17

gcc

0

1000

2000

3000

4000

5000

8KB 4KB 2KB 1KB 512B 256B 128B

M
illi

on
s

I-cache size

S
ta

ll
cy

cl
es

Prefetching

Original

gzip

0
200
400
600
800

1000
1200
1400
1600
1800

8KB 4KB 2KB 1KB 512B 256B 128B

M
illi

on
s

I-cache size

S
ta

ll
cy

cl
es

Prefetching

Original

parser

0
500

1000
1500
2000
2500
3000
3500
4000

8KB 4KB 2KB 1KB 512B 256B 128B

M
illi

on
s

I-cache size

S
ta

ll
cy

cl
es

Prefetching

Original

twolf

0

1000

2000

3000

4000

5000

6000

8KB 4KB 2KB 1KB 512B 256B 128B

M
illi

on
s

I-cache size

S
ta

ll
cy

cl
es

Prefetching

Original

vortex

0

1000

2000

3000

4000

5000

8KB 4KB 2KB 1KB 512B 256B 128B

M
illi

on
s

I-cache size

S
ta

ll
cy

cl
es

Prefetching

Original

vpr.place

0

1000

2000

3000

4000

5000

6000

8KB 4KB 2KB 1KB 512B 256B 128B

M
illi

on
s

I-cache size

S
ta

ll
cy

cl
es

Prefetching

Original

Figure 8 Effect of prefetching on ifetch stall frequency

 18

0.000

0.500

1.000

1.500

2.000

2.500

3.000

Unbounded 512 256 128 64 32 16

FIFO size

IP
C

gcc

gzip

parser

twolf

vortex

place

Figure 9 Impact of varying iQ size

5.3 Negligible L2 Cache

 To demonstrate the effectiveness of the prefetching mechanism, the L2 cache is reduced

to a negligible size of 32 B, holding only 8 instructions. Normally, the L2 is so large (128 kB in

the baseline configuration) that almost no line misses in it and L1 miss latency is 10 cycles. By

completely removing the L2, every miss in L1 would suffer a latency of 100 cycles since the

request has to go to the memory system. The L1 has its baseline configuration of 8 kB.

 Since this is an extreme case where there is hardly any L2 cache to support misses in L1,

there is bound to be performance degradation. However, the prefetching processor outperforms

the original processor and the loss in performance is not as much. Figure 10 shows the

performance of the original and prefetching processors at both the baseline configuration and

also at the small L2 configuration, for six benchmarks. Figure 11 shows how the prefetching

mechanism works better than the original by expressing the percentage of improvement.

 19

0.000

0.500

1.000

1.500

2.000

2.500

3.000

gcc gzip parser twolf vortex vpr.place

Benchmarks

IP
C

 &
 Im

pr
ov

em
en

t

Original at 128KB L2

Original at 32B L2

Prefetching at 128KB L2

Prefetching at 32B L2

Figure 10 Performance at baseline configuration and at a negligible L2 cache

117.23%

39.63%

162.67%

45.21%

-0.93%-0.25%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

180.0%

gcc gzip parser twolf vortex vpr.place

Benchmark

Im
pr

ov
em

en
t

Figure 11 Performance improvement at a negligible L2 cache

It must be kept in mind that the L2 is a unified cache containing both instructions and

data. Making the L2 negligible in size affects both the instruction fetching mechanism as well as

the data fetching mechanism, and thus the efficiency of the back end. The reason there exists any

 20

degradation at all, is because of the increased latency for both instruction and data misses in the

L1 caches.

We can see in Figure 11 that there is no improvement in the case of gzip and parser. The

reason for this is that both these benchmarks use a small working set of instructions. Since the L1

I-cache cache is reasonably sized at 8 kB, it can hold most of these instructions, thereby reducing

the number of misses. Prefetching shows its usefulness in the case of gcc and vortex benchmarks

which have a large instruction working set. These benchmarks miss in the L1 I-cache more often,

and prefetching is beneficial in reducing the effect of the large 100 cycle miss latency. Therefore,

the performance improvement is much larger.

 21

CHAPTER 6

CONCLUSION

Highly parallel back-ends of modern processors place huge demands on the instruction

fetching mechanisms. This is because of the differences in speed between the processor and

memory, the existence of branches and to a certain degree, because of misses in the caches.

This thesis proposed a decoupled instruction prefetching mechanism as a solution to

mitigate the problems faced by the front-ends of processors. The decoupling of the ifetch stage

from the rest of the pipeline with the help of an instruction queue allows fetching to continue

beyond misses. This helps to populate the L1 I-cache with useful instructions, thereby reducing

the number of misses and stall cycles in the ifetch. The results show that the number of stalls is

significantly less in the prefetching processor as compared to the original processor.

Furthermore, since the direction of prefetching is determined by the branch predictor, the I-cache

contains instructions which are more likely to be on the execution path of the program.

Since the caches are populated with useful instructions, this mechanism allows the caches

to be made smaller in size for the same level of performance. This is a huge advantage since

smaller caches means smaller access times and less area. It proves that the prefetching

mechanism is resilient to I-cache misses. The results also show that this is achievable with a

fairly small size of the instruction queue, which makes it practical for implementation.

 22

REFERECES

[1] T. Chen and J. Baer, “Reducing memory latency via non-blocking and prefetching

caches,” in Proceedings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, R. L. Wexelblat, Ed. ASPLOS-V,
New York, NY: ACM Press, 1992, pp. 51-61.

[2] G. Reinman, B. Calder, and T. Austin, “Optimizations enabled by a decoupled front-end

architecture,” in IEEE Transactions on Computers, vol. 50, no. 4, pp. 338–355, April
2001.

[3] A. J. Smith, “Cache memories,” ACM Computing. Surveys, vol. 14, no. 3, pp. 473-530,

Sept. 1982.

[4] T. M. Conte, K. N. Menezes, P. M. Mills and B. A. Patel, “Optimization of instruction

fetch mechanisms for high issue rates,” in Proceedings of the 22nd Annual International
Symposium on Computer Architecture, 1995, pp. 333-344.

[5] P. Oberoi and G. Sohi, “Out-of-order instruction fetch using multiple sequencers,” in

Proceedings of the 2002 International Conference on Parallel Processing (ICPP'02),
Washington, DC, 2002, p. 14.

[6] P. S. Oberoi and G. S. Sohi, “Parallelism in the front-end,” in Proceedings of the 30th

Annual International Symposium on Computer Architecture, ISCA '03, pp. 230-240.

[7] J. Stark, P. Racunas, and Y. N. Patt, “Reducing the performance impact of instruction

cache misses by writing instructions into the reservation stations out-of-order,” in
Proceedings of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture, Washington, DC, 1997, pp. 34-43.

