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Abstract

Implicit parallelization involves developing parallel al-
gorithms and applications in environments that pro-
vide sequential semantics, e.g., the C programming lan-
guage. System tools convert the parallel algorithms
into a set of threads partitioned appropriately for a
particular parallel machine organization. The result-
ing parallel programs are easier and faster to develop,
debug and maintain, because the programmer can re-
quest a meaningful and well defined program state at
any point of execution.
The contribution of this paper is a case study of a
video encoding application. We show that error check-
ing code, code reuse, and variable scoping interfere
with parallelization. We suggest that system tools
must perform reactive and speculative transformations
if they are to reduce this tension between application
robustness and parallelization.

1 Introduction

Processor performance gains are now due almost en-
tirely to the incorporation of ever larger numbers of
cores onto commodity chips. Multi-core and multi-
threaded designs deliver peak instruction throughput
that scales with Moore’s law and they provide better
power/performance tradeoffs than monolithic super-
scalar designs given the same number of transistors.
Additionally, multi-core designs leverage replication to
amortize design and verification costs. Semiconductor
manufacturers find multi-core processors easier and
cheaper to design than monolithic designs of similar
size or peak performance.
While multi-core designs allow peak performance to
track Moore’s law, they introduce new challenges for
software developers. Multi-core and multi-threaded
designs require multi-threaded software. While there
may be domains where finding adequate threads
to run concurrently is “easy,” (perhaps in web ser-
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vices, database query processing, scientific comput-
ing, graphics, gaming, or signal processing), multi-
threaded programs, in general, take longer to develop
than sequential programs with equivalent functional-
ity. Multi-threaded programs are non-deterministic,
making it difficult to reproduce bugs, and have more
bugs (race conditions, livelocks, deadlocks) than se-
quential programs with the same functionality. When
coupled with the scope of code change required to
achieve desired execution throughput, as dictated by
Amdahl’s law, the increased time for testing, debug-
ging and verification make explicitly multi-threaded
models unattractive.

This creates a new set of challenges for the semicon-
ductor and software industries. There will be few new
“killer apps” to take advantage of the new comput-
ing power until an entire generation of millions of pro-
grammers learns to write programs that can leverage
the parallelism on these new chips. Without observ-
able increases in functionality, there will be little reason
for consumers to invest in new hardware or software.

Motivated by previous work in automatically par-
allelizing compilers and speculative multi-threading, I
propose a set of runtime tools that will help program-
mers express parallel programs in a way that is more
natural, allowing them to use the abstraction and in-
formation hiding tools that they need in order to de-
liver robust programs in a timely manner. The pro-
grammer writes an implicitly parallel program. That is,
the programmer designs a parallel algorithm, but ex-
presses it in a conventional sequential programming
language. The programmer annotates the program to
indicate where the tools should look for parallelism.
The program is compiled and run on the multi-core
system. The compiler and run-time system are respon-
sible for actually transforming the program to express
the latent parallelism.

Building tools that transform a parallel algorithm
into an explicitly parallel representation is difficult be-
cause there is no silver bullet that will solve the prob-
lem. The work proposed here builds on forty years
of work by the computer systems community on au-
tomatic parallelization, and twenty years of work on
speculative parallelization. Programmers, for software
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engineering and information hiding reasons, prefer to
combine together sequential portions of code with po-
tentially data-parallel code. Thus the systemmust sup-
port generalizedmethods of loop distribution to “tease
apart” the sequential and parallel portions of code. In
addition, programmers, again for software engineering
reasons, often need to include error checking code, spe-
cial case code, and optional but rarely used features.
Many of these application features introduce true se-
quential dependencies that defeat conservative com-
piler analysis. Thus the system must support approxi-
mate forms of analysis and transformations that can be
undone by the runtime system.

The system consists of three main components. The
first is a coarse-grain checkpoint repair system. This al-
lows the programmer to write code that contains error,
and special case, handling code that might otherwise
impede the expression of parallelism in the common
case. A runtime distiller, directed by feedback about the
common paths in the program, then extracts a specula-
tive version of the program where uncommon paths
are replaced by traps to recovery code. This removes
any error handling code from the critical path, and also
specializes the code for the particular command line
options and inputs that it was invoked with. Finally
an on-line queue converter takes the streamlined paral-
lel loop and performs scalar expansion and loop distri-
bution. This exposes the latent parallelism in the loop
by extracting any remaining sequential code into its
own loops, to be run separately from the parallel code.
The resulting implicitly parallel programming envi-
ronment allows programmers to express parallel algo-
rithms, but to do so in a deterministic, reproducible
and portable way [50].

2 The Conflict between Maintain-

ability and Parallelism

The problem of parallelizing a task seems, unfortu-
nately, to conflict with the primary goals of software
engineering, including minimizing the time to deploy-
ment of a robust product [66]. It is already difficult to
engineer robust, reusable and maintainable modules.
Parallelism makes the problem harder. In this section I
consider several examples that demonstrate these con-
flicts to motivate the need for implicit parallelization
tools.

Consider, for example, the H.264 video encoding
reference implementation included in the SPEC 2006
benchmark suite. H.264 video encoding would seem,
at first glance, to be an application that ought to be easy
to parallelize. In fact, it may be relatively easy to pro-

duce a parallelized kernel [61].1 Unfortunately, even
though the implementation included in SPEC 2006 is
only about 50,000 lines long (i.e., small compared to
any significant application), we discovered multiple
places where we had to dramatically change the soft-
ware structure or algorithm in order to create a version
that could run in parallel [87].

Briefly, H.264 is a recent international video encod-
ing standard that is used for high quality digital televi-
sion. It achieves both good picture quality and excel-
lent compression by exploiting the fact that portions of
background images tend to be shared between frames,
giving the video stream redundancy from frame to
frame.

The algorithm divides each frame of the movie into
16×16macroblocks. As shown in Figure 1, for each mac-
roblock in a frame, the application successively per-
forms (a) motion estimation (the most compute inten-
sive step), followed by (b) frame-differencing, (c) a dis-
crete cosine transform (DCT), (d) quantization of the
resulting transform (the lossy step), and (e) bitstream
encoding (a task that seems to be fundamentally se-
quential). In order to avoid accumulating errors at the
decoder output, the encoder keeps track of the picture
that will be reconstructed by the decoder. That is, the
encoder runs the decoder on the encoded result of the
current frame and uses it as the next previous frame
when encoding the next frame. The decoder’s work is
reconstructed by (f) dequantization and (g) running an
inverse discrete cosine transform (IDCT).

2.1 Error checking

Of course, good software engineers check for errors re-
ligiously. Even errors that can “not possibly happen”
ought to be checked for, because the “proof” of im-
possibility often depends on invariants that are inval-
idated in a future revision of the code. In the case of
the H.264 reference implementation, for example, the
main loop calls a function SetModesAndRefframe-
ForBlocks(), that checks for, and handles, invalid
arguments. Of course, the common case is (hopefully)
an input with no errors, so the validity check should
rarely fail.

The exception handlers that restore an application’s
valid state, allowing it to continue operating after an
error is detected, present a barrier to parallelization.
The exception handlers usually restore a valid state
by modifying shared data structures. The shared data
structure modifications create interdependences with

1A kernel is the innermost loop of an application or algorithm,
stripped of all error checking and handling, options, generalizations,
and information hiding.
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(a) Motion estimation searches for the best 
matching 16×16 block in the previous frame.
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Figure 1: The H.264 video encoding reference implementation from the Spec 2006 benchmark suite. Each video frame is made
of 8,160 16×16 pixel macroblocks. Frames are processed sequentially because the computationally intensive motion estimation
step needs to search the previous frame for a close match to the current macroblock. Except for the bitstream encoding stage,
the macroblocks within a frame can be processed in parallel.

the rest of the application, forcing conservative com-
piler transformations to serialize the code. So the par-
allelization system must both handle special cases like
these, and yet provide parallelism in the common case
that there is no error.

In the ILP domain problems like these have been ef-
fectively attacked with checkpointing and speculation.
Fisher’s Trace Scheduler [34] used profiling to select
likely paths (traces) through the code, and then spec-
ulatively scheduled those paths assuming that none of
the intervening branches would leave the path. Since
then, numerous ILP techniques have successfully used
speculative optimizations, both in software [48, 16, 88,
73] and in hardware [49, 80, 106]. The key is to use
checkpointing to implement precise exceptions, predict
that certain invariants will hold, and raise an exception
if the prediction turns out to be incorrect.

For the implicit parallelization problem I propose to
use a coarse-grain checkpoint repair mechanism to pro-
vide a form of precise exception handling during par-
allel execution. With the assistance of the run-time
compiler, system state is checkpointed at regular inter-
vals during parallel execution. Error and special case
handling code that rarely executes is identified using
feedback from previous runs of the program. The run-
time compiler rewrites error and special case code that
might run during parallel execution, so that they will
raise exceptions that (a) force rollback to the most re-

cent checkpoint and (b) roll forward on the sequential
version of the code until the special case code is exe-
cuted, and then (c) checkpoint and resume parallel exe-
cution. The load-time compilation and runtime-system
support required for this is discussed in Section 3.1.

2.2 Command-line Parameters

The H.264 reference implementation includes many
command line parameters so that the encoder can exer-
cise various options of the standard. For example, the
user of the application may choose whether or not to
turn on rate control. If rate control is turned on then the
bitstream encoder monitors the compression rate and
may adjust the parameters to be used by the quantiza-
tion stage on the subsequent frame. If rate control is off,
the quantization stage can run ahead of the bitstream
encoding stage. If rate control is on, the quantization
stage needs to run in lock-step with the bitstream en-
coding stage. Thus, how the program is restructured
for parallelization depends on how this command line
parameter is set.

In both cases, with rate control on or off, the rest of
the encoding algorithm is the same. So that the rest of
the code may be reused (rather than, for example, cut
and pasted into two different files for the two different
options), the tests for the rate control option are em-
bedded into the main body of the code. As the num-
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ber of options to a program grows, this form of code
reuse becomes increasingly critical: while there are ex-
ponentially growing possible dynamic paths through
the code, options allow the static amount of code that
must be maintained to grow considerably more slowly.
We are attacking this problem using feedback-directed
program distillation. When the program is loaded the
run-time compiler makes a best guess at the common
path through the parallel code based on statistics from
previous runs. Paths that are deemed uncommon are
rewritten, like special case code, to raise exceptions.
As the program runs, if a particular exception path is
taken repeatedly (if, for example, a run-time param-
eter is requested that was not requested in previous
runs), the run-time compiler is reinvoked to remove
the exception and to try to reparallelize the code based
on the new common-case paths. The required profil-
ing and runtime-system support for feedback-directed
program distillation is described in Section 3.2.

2.3 Local Variables

The H.264 main loop, as written, is not actually paral-
lel. There is a loop carried dependence from each it-
eration of the loop to the next through the bitstream
encoding step. The bitstream encoder used in H.264,
as with most variable rate and lossless predictive en-
coders, needs to maintain some state about the encod-
ing that it has already done, and change that state as
it outputs each encoded macroblock. Because the en-
coding of each macroblock depends on the encodings
performed for the previous macroblocks, the bitstream
encoding for all the macroblocks within a frame must
be performed sequentially.2

When designing sequential code, programmers of-
ten follow the tactic of placing some sequential work
inside an otherwise parallelizable loop because doing
so makes the code easier to maintain. In this case, with
the bitstream encoding step inside the loop the quan-
tized macroblock can be stored in a variable declared
local to the scope of the loop body, rather than in a vari-
able exposed to other parts of the code. If the bitstream
encoding is moved outside the loop (as is required for
parallelization of the rest of the loop) then all the quan-
tizedmacroblocksmust be stored in a queue data struc-
ture.
Since the C programming language doesn’t natively
provide a queue data type, code for such a data struc-
ture would need to be written, tested and maintained.

2One can also parallelize bitstream encoding of different frames,
at the cost of some loss in compression, by clearing the prediction
tables between frames. The more compute-intensive motion estima-
tion phase, however, needs to be parallelized at themacroblock level,
so parallelizing the bitstream encoding stage would also require the
kind of restructuring discussed below.

In addition, because of the rate control flag, discussed
above, if the bitstream encoder is queueing its data
then the quantizer needs to work from a queue as well.
Finally, if the quantizer is working from a queue, the
dequantization phase also needs to be moved out of
the loop. To parallelize the program, the main body of
the program needs to be completely rewritten.

Streaming library frameworks and programming lan-
guages have been designed to assist in this kind of
rewriting [17, 56, 40, 25, 42], elevating the notion of
communication queues to a program structuring tech-
nique. This conversion of variables into queues is
both fundamental to parallelization and comes at a
cost. Scalar values that were previously communicated
through registers are now communicated through
memory references to queue data structures. Thus, one
of the main objectives of compilers for streaming lan-
guages is to transform the stream communication back
to register communication [59].

We find it preferable to leverage the coarse-grain
checkpointing and run-time recompilation tools, intro-
duced above, to implement on-demand scalar expan-
sion and loop distribution. Scalar expansion is the pro-
cess of converting a particular scalar variable in a pro-
gram to dynamic single assignment form [58, 24, 33, 53].
Loop distribution, or loop fission, is the process of turn-
ing one loop, containing both parallelizable and se-
quential statements, into multiple loops each contain-
ing either just parallelizable or just sequential state-
ments [58, 54, 47]. I call the combination of scalar
expansion and loop distribution scalar queue conver-
sion [36]. This process is described in more detail in
Section 3.3.

3 Background and Overview

The goal of the work proposed here is to design a set
of implicit parallelization tools that help alleviate the
tension, described in the previous section, between the
desire to keep software robust, reusable, testable and
maintainable, and the transformations required to ac-
tually expose the parallelism in the code. An overview
of the proposed system support is shown in Figure 2.
The programmer writes implicitly parallel code (paral-
lel algorithms in a sequential programming language).
The programmer annotates the code with directives
that tell the runtime system which portions of the code
it should try to parallelize. The system compiler gener-
ates a traditional sequential binary from the code, and
passes the programmer annotations as hint instruc-
tions in the binary.

The first time the code runs, the run-time distiller
makes a best guess at which paths through the code
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Figure 2: Proposed software tool chain.

are to be executed, and generates distilled code for the
programmer-annotated sections. The distilled code is
a second version of the code that contains checkpoint
instructions that will execute at regular intervals and
then replaces cold-path code with special trap instruc-
tions that, if ever executed, roll machine state back to
the most recent checkpoint, and then roll forward with
the original, sequential version of the code.
The distilled code is then passed to the on-demand
queue converter, which performs queue conversion on
the distilled code, producing a sequence of parallel and
sequential loops that communicate through queues.
The resulting code is then run on the multi-core archi-
tecture. In the common case it is hoped that very few
trap instructions from cold-path code will cause roll-
backs. The system collects statistics about cold-path
traps that cause rollbacks. If rollbacks occur at a sig-
nificant rate the distiller is reinvoked to choose a new
set of hot paths, and the cycle iterates.

3.1 Coarse-grain Checkpointing and State
Repair

Checkpointing across windows of several hundred
instructions can be achieved microarchitecturally by
checkpointing registers only at points likely to require
rollback, and queueing speculative stores until com-
mit [49, 105, 65, 3]. Checkpointing across larger win-
dows can be achieved, for example, by updating mem-
ory in place, and then keeping a log, in virtual mem-
ory, of the previous contents of each memory location
overwritten. Wu et al [104] used an idea like this to
support multiprocessor error recovery. More recent ex-
amples of logging to support multiprocessor error re-
covery [82, 91], use the directory controller to log the
previous contents to virtual memory in the (rare) case
that an error occurs and rollback is required.

The Software UnDo System (SUDS) used update in
place and a log in virtual memory to support specu-
lative parallelization [37, 35, 36]. Similar ideas have
been proposed recently for virtualizing transactional
memory support [81, 5, 83]. The LogTM system [71], in
particular, uses in-place updates and history logging to
optimize the common case in transactional memory.

If one follows the path of supporting coarse-grain
checkpointing at the directory controller, acheckpoint in-
struction becomes a directive to (a) save the currently
live registers to the stack frame, (b) store the program
counter of the exception handling routine correspond-
ing to this checkpoint in a well-known location, (c) re-
set the history buffers from the previous checkpoint
and (d) clean all the caches, ensuring that all cache lines
are in state shared.

The first time any cache asks for exclusive access
to a line after the checkpoint, the directory controller
will save a clean copy of that cache line in a history
buffer. Storage for the history buffer is made of phys-
ical DRAM pages that the operating system has allo-
cated to the directory controllers [104, 81, 91, 5, 83, 71].
The directory controller then sets a bit in the state for
that line that says that it has been logged.

As program execution rolls forward each thread of
execution commits store instructions to memory, as
they normally would. If the next checkpoint is reached
without requiring a rollback then the caches are again
cleaned, the directory controllers unset the logged bit
on the cache lines that they control, and the history
buffers are emptied, inexpensively, by resetting head
and tail pointers.

A rollback is initiated by a cold-path trap instruc-
tion, and is handled, in software, by the operating sys-
tem. The processors involved in the computation are
all interrupted. Then each processor rolls back the log
associated with one of the directory controllers. This
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is effected by copying each cache-line copy from the
log over the corresponding (incorrectly written) line in
main memory.
Note that the checkpointing and state repair system
specifically does not perform any memory renaming.
This is because previous work we have done in this do-
main has shown thatmemory renaming is rarely neces-
sary [95, 96]. In cases where memory renaming is nec-
essary, simple tricks can eliminate the need to do it dy-
namically. For example, most store-after-store depen-
dences occur because the traditional stack-based frame
allocation policy leads adjacent procedure calls to use
the same stack memory locations for completely differ-
ent values. If one uses a freelist-based frame allocation
policy [92], instead of a stack-based policy, these de-
pendences are eliminated [76]. Similarly, in languages
with nested variable scoping (e.g., C, C++, C#, Java)
arrays and structs that are private to a loop iteration
can be declared in the scope of the loop body [36],
eliminating even the need for array privatization anal-
yses [33, 62, 67, 100].

3.2 Distiller

The distiller stage can be viewed as a feedback-directed
program specializer [41] that leverages checkpoint-
ing to permit optimistic, and speculative, optimiza-
tions. The design of the distiller stage is influenced by
trace scheduling compilers [34, 48], the main difference
here being that we are proposing to use the technique
to enable turning loop iterations into threads rather
than parallelizing across individual instructions. While
the original trace scheduling compilers used feedback
from profile runs, more recent versions have been on-
line compilers that can make use of feedback from the
currently running program [9, 31, 10, 68, 30, 26, 102].
The checkpointing interface, discussed above, that is
leveraged by the distiller stage is most directly influ-
enced by the rePLay interface [80, 32]. RePLay intro-
duced two primitives. The first indicates to the mi-
croarchitecture where it should commit the previous
checkpoint and start a new one. The second, an as-
sertion instruction tests a condition, and rolls back to
the most recent checkpoint if the condition fails. When
an assertion fails, execution rolls back to the check-
point and then moves forward on the original (unop-
timized) code. While rePLay’s trace optimizer was im-
plemented in hardware, a similar interface has been
leveraged more recently by the runtime compiler in a
Java virtual machine [73].
The distiller in our systemwill be applied only to the
loops that the programmer has identified as desirable
to parallelize. The distiller will choose an appropriate
checkpointing interval by speculatively strip mining. In

Figure 3 the distiller has strip mined the loop at the top
so that a checkpoint occurs once per strip of 1024 itera-
tions. The actual number of iterations chosen will de-
pend on the application, the number of cores, and the
configuration of the caches (more iterations will force
the queue converter to create larger buffers). The body
of the strip mined loop contains arbitrary control flow,
but the distiller can decide to speculatively remove any
code paths from the body that feedback tells it are not
taken often enough to be relevant. The distiller trans-
forms the branches to these rarely taken paths into con-
ditional trap instructions. It is the intention that it is the
1024 iteration strip that will be parallelized by the on-
demand queue converter described in Section 3.3.

The distiller also leverages ideas from 20 years of re-
search in speculative parallelization [55, 98, 38, 101, 90,
84, 28, 99, 94, 45, 64, 57, 51, 2, 81, 79, 27, 85, 77, 18, 23, 1],
and control independence [86, 20, 22, 46, 4]. Although
there is some recent evidence to the contrary [52] these
systems have shown that one can improve parallelism
further by speculating on invariants in addition to
branch direction. In particular, it seems worthwhile
to speculate on memory dependences. This has also
been observed in the ILP domain [74, 39, 21]. In my
own previous work on PolyFlow [1], for example, we
have observed automatic parallelization speedups on
dusty deck, Spec 2000 integer, benchmarks of between
10% and 133%, with an average of 53%, as shown
in Figure 4. Careful examination of the loops paral-
lelized shows that they contain true memory depen-
dences (loads in one thread that occasionally depend
on a store in a different thread), but that these depen-
dences rarely, or never, manifest themselves. Mock
et al have similarly observed that points-to sets mea-
sured during profiling are significantly smaller than
the points-to sets calculated by static analysis [69], and
attribute the difference, in part, to these potential, but
unexpressed dependences.

So that our system may parallelize across these real
(in a conservative sense) but rare memory depen-
dences the distiller must also be able to test for cross
iteration dependences and trap if they manifest. Rel-
atively small tables and hashing structures, similar to
the ALAT in the IA64 can be leveraged to effect these
dependence tests efficiently [39, 8]. For example Ceze’s
Bulk mechanism [18] simplifies dependence testing
hardware by keeping signatures of the sets of addresses
accessed by a thread. These signatures are approx-
imate, but can be made probabilistically accurate by
leveraging techniques from Bloom filters [14]. Knight
also noted that hashing could be used to do approx-
imate dependence testing [55]. Dependence testing
does not need to be a particularly low latency opera-
tion. For example, it does not need to be done as mem-
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top:

    /* original loop body */

if $c goto top

done:

speculate:

checkpoint (recover)

    $i = 0

strip:

    /* distilled loop body */

if !$c trap

    $i = $i + 1

if $i < 1024 goto strip

if $c goto speculate

done:

recover:

    $i = 0

top:

    /* original loop body */

if !$c goto done

    $i = $i + 1

if $i < 1024 goto top

    goto speculate

Figure 3: Speculative strip mining turns the loop on the top into the distilled loop on the right that checkpoints once every 1024
iterations. When an early exit, or any other exceptional condition, occurs in the distilled loop, system state is restored to the most
recent checkpoint and the sequential recovery loop on the left is run to get past the exception.

benchmark bzip2 crafty mcf parser twolf vpr.place vpr.route
speedup (%) 10 60 10 44 75 120 133

Figure 4: Memory dependence speculation on dusty deck (spec 2000 integer) benchmarks can yield parallelism improvements
as high as 133% when running on a 4-core processor.

ory accesses occur, but may be delayed until just before
committing a checkpoint [84].
While the latency of dependence testing and profil-
ing information for feedback directed distillation is not
particularly important, the resource utilization of these
operations is a critical performance determinant. Even-
tually we hope that the distiller can move performance
counters off the critical path, into exception handlers.
In the short run our system needs to support relatively
efficient basic-block counting [60, 63]. In the longer
term it will also be necessary to get feedback about spe-
cific memory dependences [69, 72]. There will need to
be an interplay between the static compiler and the in-
strumentation tool in order to make this satisfactorily
efficient.

3.3 On-demand Queue Converter

The final piece of the proposed system is the on-demand
queue converter. Some kind of scalar renaming, or dy-
namic single assignment form seems to be a neces-
sity for all parallel programming systems. Paralleliz-
ing compilers have always required scalar expansion
and loop distribution [58, 78, 24, 33, 54, 47]. Simi-
larly, many explicitly parallel programming languages

are based on dynamic single assignment (functional
programming) as their primary method for expressing
parallelism [43, 70, 15, 12]. In these languages the pro-
cedure activation (stack frame) is the primary unit for
expressing renaming [53, 7].

Because of the requirement to have many copies
of scalar values live simultaneously, many research
parallel architectures have provided specific hardware
support for synchronizing on these values [6, 25, 89,
44, 97]. The support varies from fine-grain multi-
threading combined with full-empty bits on memory
locations [89, 44, 75], to support for streams of struc-
tures [6, 25], to explicit, fine grain, message pass-
ing interfaces [90, 97]. It is an open research ques-
tion whether commodity multi-core processors, with
their straight-forward shared memory implementa-
tions contain adequate support for scalar expansion,
fine-grain multi-threading or streaming.

The on-demand queue converter in our system is
responsible for performing scalar expansion and loop
distribution. There are a number of phases required.
First the queue converter must collect dependence in-
formation and form a value-flow graph [93]. Cycles
in the value flow graph indicate portions of the graph
that must be serialized [54]. Arcs of the value-flow



8 M. I. Frank

foreach macroblock in cur_frame:

  motion estimation

  frame difference

  DCT => Queue_A

foreach macroblock in Queue_A:

  quantize => Queue_B

  bitstream encode

foreach macroblock in Queue_B:

  dequantize

  IDCT

Queue_A

Queue_B

curr_frame

16x16

macroblocks

Output
bitstream

Next prev_frame

transformed
macroblocks

quantized
macroblocks

16x16
macroblocks

prev_frame

Parallelizable loop

Sequential loop

Parallelizable loop

Figure 5: H.264 main loop restructured by on-demand queue conversion.

for (i = 0; i < num_blocks; i++)
Vector guess = i ?

(cur_frame[i-1].best_vector) :
(0,0);

cur_frame[i].best_vector =
GetMatch(cur_frame[i],

prev_frame, i, guess);

(a) Guess vectors are obtained from the previous 
macroblock of the current frame.

prev_frame

cur_frame

for (i = 0; i < num_blocks; i++)
Vector guess =

prev_frame[i].best_vector;
cur_frame[i].best_vector =

GetMatch(cur_frame[i],
prev_frame, i, guess);

(b) Guess vectors are obtained from the 
corresponding macroblock in the previous frame.

prev_frame

cur_frame

Figure 6: H.264 Encoder Motion Estimation Example and Dependence Visualization. The algorithm on the left is sequential be-
cause every iteration depends on the best vector generated in the previous iteration. The loop on the right can be parallelized
because this dependence has been removed.
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graph that enter or leave cycles represent variables that
need to be scalar expanded [36]. Next the code for each
thread must be transformed to make the communica-
tion operations explicit. Finally, the resulting paral-
lelizable loops must actually be converted into the na-
tive thread interface of the underlying architecture.
The result of this process performed on the H.264
main loop is the three loops shown in Figure 5. The first
loop is parallelizable across macroblocks, and contains
the motion estimation, frame differencing and DCT op-
erations. The output of the first loop is a queue that
contains the results, across many macroblocks, of the
DCT phase. The second loop is sequential and contains
the quantization and bitstream encoding operations.
The sequential loop reads in the queue produced by the
first loop, and outputs both an encoded bitstream and
a new queue that contains quantized macroblocks. The
final loop is parallelizable and contains the dequantiza-
tion and IDCT operations. It reads in quantized mac-
roblocks produced by the sequential loop, dequantizes
and inverse-transforms each one, and writes the result
into the Next prev frame image. Queues are required
to communicate between the three loops, but no addi-
tional overhead is added to communicate between op-
erations inside one loop.

3.4 Additional Compiler Optimizations to
Support Concurrency

Traditional vectorizing and parallelizing compilers
typically improve code concurrencywith several trans-
formations in addition to loop distribution. It is likely
that these transformations would also be beneficial in
this context. Examples of such transformations include
reduction reassociation and forward propagation. Re-
duction reassociation identifies long spines of depen-
dent operations that are associative, and turns those
spines into trees or rakes that have smaller depen-
dence depth [58, 103, 19, 11, 36]. Forward propaga-
tion “undoes” any redundancy eliminations that cre-
ated additional dependence spines. Forward propaga-
tion may result in the program doing more work, but
can also eliminate dependence chains that constrain
concurrency.

4 Algorithm Choice

If parallelization is to succeed, the programmer must
choose a parallel algorithm, rather than a sequential al-
gorithm. For example, radix sort contains fewer cross-
iteration dependences than does quicksort [13, 29], so a
programmer developing a parallel application should
know to call a radix sort routine rather than a quicksort

(and the system library should provide a radix sort in
addition to, or instead of, quicksort).

In the case of H.264 there are also important choices
to be made in algorithm design. Motion estimation
is the most compute intensive part of the application,
and therefore the part of the application that it is most
desirable to parallelize. The motion estimation stage
for each macroblock works roughly as follows. Each
macroblock represents a 16×16 pixel square of the cur-
rent frame. The frame preceding the current frame is
searched for a 16×16 pixel square that is most similar
to the current macroblock.

The H.264 standard permits this search to be heuris-
tic (rather than an actual optimization), and so the
motion estimation stage is where vendors distinguish
their products in terms of compression rate versus
computational efficiency. An optimal compression al-
gorithm would calculate the similarity between the
current macroblock and the 16×16 block at every posi-
tion in the previous frame and choose the most similar
block. In practice this would be far too computation-
ally intensive, so the heuristic algorithm will instead
search inside a relatively small disc that surrounds the
initial guess and stop sooner if it finds a block that
matches the current macroblock closely enough.

Many motion estimation heuristics have been pro-
posed and two are shown in Figure 6. In both the
heuristics shown here, the motion estimation starts
with a guess vector that represents a heuristic guess
about the most likely point for the best match in the
previous frame. The heuristic in Figure 6(a) chooses a
guess vector based on the insight that objects tend to
be larger than a single macroblock, so it is likely that
whatever motion vector was calculated for the mac-
roblock to the left is likely to be a pretty good guess
for the motion of the current macroblock. The heuris-
tic in Figure 6(b) chooses a guess vector based on the
insight that physical objects (including video cameras)
tend to have inertia, and thus the motion of the scene
in this frame is likely to be similar to the motion in the
previous frame.

While the two motion estimation heuristics in Fig-
ure 6 seem similar on the surface, the heuristic in Fig-
ure 6(a) will completely serialize the motion estima-
tion algorithm, while the heuristic in Figure 6(b) per-
mits parallelization of the motion estimation algorithm
for a frame. In the heuristic in Figure 6(a) the cur-
rent macroblock can’t start its search until the previous
macroblock has finished finding its best match, which
is then used as the guess vector for the current mac-
roblock. In the heuristic of Figure 6(b), however, the
motion vectors for all the macroblocks of the previ-
ous frame have already been produced (because we
need the previous frame to compare to anyway), so the
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motion vectors for the macroblocks from the previous
frame can be used without creating a dependence that
will obstruct parallelism. If the compute-intensive mo-
tion estimation step is to be parallelized, the program-
mer must choose an appropriate parallel algorithm, in
this case one like the heuristic in Figure 6(b).
Designing parallel algorithms is the hard intellectual
work that requires human creativity. Parallelization of-
ten (as in the case of H.264 motion estimation) requires
the programmer to understand tradeoffs that are dif-
ficult to communicate in code. In this case, different
motion estimation heuristics change the compression
rate and quality of the output. The programmer must
evaluate the tradeoffs between parallel performance,
compression and quality. The goal of my work in im-
plicit parallelization is to automate as much of the er-
ror prone parallelization process as possible, so that the
programmer can concentrate on the truly challenging
issues that are at the heart of the matter.
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